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ABSTRACT

The object of this inQesfigafion‘was 1o devefop a general
consfifuffve equafion for the room temperature meéhanjcal response
of nuclear grade graphite. The distinguishing characteristics of
this response are (i) the stress-strain relation appears to be in-
_dependeﬁf of the rate of loading short of impact rates; (%i)'fhe
response exhibits a pronounced degree of transverse iso+r§py; and
(ii1), the material undergoes permanent p!asch deformation even at
the lowest stress levels,

The greatest pér%ion ot this report is devoted foyfhe
derivation of constitutive relations for the scalar and three di-
mensional cases. The scalar theory succeeds in demonstrating rate
independence and plasticity while the Three dimensional theory in=
corporates transverse isotropy.

Comparison of the Theéry is made with some available
uniaxial cyclic load=strain data for ATJ graphite. The scalar Theofy
provides an excellent correlation with experiment while the three

dimensional theory gives a reasonably good conservative correlation.



{. INTRODUCTION

A,  Purpose and Scope of Research

The objecf of this investigation was to develop a general
constitutive equafién-for‘fhe room Tgmpera+ure mechanfcaivbehaviqr
of nuclear grade graphife. To this end, this report presents a
constitutive theory for the rate independen? transversely isotropic
bresponse éf graphite or any other material exhibiting similar dis-
tinguishing characteristics. A specific application of the theory
is made fo-uniaxiai cyclic load=strain experiments. A comparison
of the theoretical and‘experimenfal resufts is given, |

| fn this analysis the stress tensor is taken to be é tensor

functional of some measure of deformation. Invariance requirements
place restrictions on the form of these functionals. |f a function
is coﬁsidered as a mapping of a set of pumbers onto another such .
'éef of numbers; then a functional may be considered a mapping of a
set of functions onto another such set of functions., Involved in
these mappings are kernéls, called material functions, describing
the béhavior of the material. For example, in the case of a linear
viscoelastic material which is iséfropic and whose mechanical
response is described by means of a linear functional, two material
functions are needed, say the shear and bulk relaxation functions,.

Experimental data for ATJ graphite consisting of stress-
strain (longitudinal and transverse) data for uniaxial loading ‘
parallel to the three major material axes is available. This data

is sufficient to determine certain of the response parameters in



special cases, and it is used as a quantitative evaluation of %he
reptegenfafiono

| I+ is presumed fhaf graphite is a rate indepéndenf material |
which is transversely isofropic and history dependent. These assﬁmpw'
tions are, in facf,'verifiedvby.experimenf, Many physicéi systems -
possess the prober?y of having their output dependent only upon the
present value of the inpufes In the majority of cases, however, the
oufp@+ of a sysfem depeﬁds in some way upon the past history of the
input. For instance, the temperature, at a given instant ot time,
in an electric furnacé is not only‘dependenf on the current flowing
in the heating element at that instant, but alsoc on the past history
of the electric current applied. ’

A material is said to be rate independent if the stress at
any instant of +ime’depends on the deformation history, but not on
The ra+e at which the deformation history was executed. For example,
a linear viécoelasTic material will exhibif aifferenf stress outputs
for the same inputs when these inputs are applied at different rafeée
Graphite, however, exhibits the same output for all input rates short

of impact intensity,



Bs Graphite
l» General characteristics
Graphite in its natural form, was doubtless known to pre-—
historic man and may even have been put to use by some of the
ancient civilizations. The first published reference to graphite is

found in the Natural History of Ferrante Imperato in 1599 [|]*,

Imperato called graphite "graphio piombino," The name graphite was,
however, orlginaféd by Abraham Gottlob Werner. The scientific inves-
tigation of graphite began toward the end of the eighteenth century.
In 1799 Karl Wilhelm Scheele discovered that graphite was mineralized
coal, Allen and Pepys, showed in 1807, that charcoal, diamond, and
graphite left the same residue after they had been burned. Since that
time much progress has been made. The crystal structure of graphite
has been determined. The thermal, mechanical, and atomic properties
of graphite have been investigated. Graphite has been produced
artificially and it has lent itself to many applications In
industry [2].

Graphite iIs a form of pure carbon. Along with diamond and
charcoal it is one of the three forms of carbon found in nature,
The difference between these three forms of carbon is that diamond
crystallizes cubically, charcoal crystallizes amorphously, and graphite
crystallizes hexagonally [3].

The ideal graphité crystal structure, as shown in Fig. |

Page 97, can be seen to possess a layered structure. As a consequence

* Numbers in brackets refer to entries in the bibliography,



of the relatively small distances between the carbon atoms in each
layer, 1.42A°, strong bonding exists between the atoms in these
layers. The bonding between successive layers is much weaker due
to the relatively large distances, 3.35A°, between these layers,
This results in the easy displacement of the layers relafive.fo
each other and accounts for the fact that graphite is often used as
a lubricant,

Other consequences of this layered structure are evidenced
by the pronounced anisotropy of many of the physical properties
exhibited by graphite [4]. The various anisotropy ratios of graphite
are now discussed in terms of the ratio of the "weak' axis to the
"strong" axis. In its "strong" direction graphite is probably
harder than diamond. For an ideal single crystal the anisotropy
ratios of hardness may be as low as 1/100 or even 1/1000. Graphite
is exfremely compressible normal to the network planes and anisotropy
ratios have been estimated to be on the order of 10 or 0%, I+
should be noted that polycrystalline graphite consists of an
agglomerafion of small crystals at various orientations, with, on
the average, 20% free space or porosity.

Aside from its anisotropic properties graphite is colorless,
tasteless, non-toxic, and almost chemically inert. Graphite has a
very low coefficient of thermal expansion along with the fifth highest
thermal conductivity of any material and it is a good conductor of
electricity. Unlike most materials the strength of graphite will
increase with temperature to at least 2500°C. Graphite has one of

the highest strengths per unit weight of any material, and at



temperatures above 1600°C it is superior to any known metal or
ceramic,
2, Graphite as a Material with Memory

Most materials have mechanical properties which are in some
manner, dependent upon the past history of some mechanical variable
[5]s A material of this type is commonly described as a material
with memory, |f this material exhibits some mechanical property
which ls influenced to a great extent by events which have occurred
in the recent past, and is influenced to a lesser extent by events
which have occurred in the more distant past, then this type of
material is termed a material with fading memory. Various types of
materials are observed to exhibit various degrees of fading memory,
and indeed, materials with virtually no memory are also common.

An examplie of a material which lacks memory effects is an
elastic material. The present mechanical state of an elastic material
is not dependent upon its history of deformation, but only upon its
present mechanical state. Thus, an elastic material has mechanical
properfie$ independent of its deformation history, A viscoelastic
material often has a fading memory of deformation, since deformations
which have occurred in the far distant past might have little
influence on the present mechanical state of the material, as compared
with deformations which have occurred in the recent past and which
have great influence on the present mechanical state of the material.

In subsequent work presented in this disserfafien, functional
relations which relate the present state of stress in a material to

its history of deformation will be dealt with. Functional relations



of this type will be derived which, when applied to graphite, will

be capable of describing cér+ain mechanical properties of the
material. At room temperature, graphite does not exhibit the fading
memory property. In fact, graphite might be classified as a material
with perfect memory, Events, i.e. deformation histories, which have
occurred long in the past may have as much influence on the present
state of stress as events which have recently takén place.

The physical processes taking place within graphite, which
are generally thought to be responsible for this perfect memory
property, are classified as plastic yielding phenomena [6], [7], [81.
Plastic yielding occurs in graphite at even the smallest strains
contributing to the yielding of the material, and the effect of
these strains will be felt for all time. This is the justification
for classifying graphite as a material with perfect memory. I+ should
also be noted thal room temperature graphite, unlike materials which
exhibit fading memory for histories which do not yield the material
and are classified as elastic~plastic or elastic~viscoplastic, never
exhibits the fading memory property.

3. Qualitative Mechanical Response of Room Temperature Graphite

The qualitative characteristics of the uniaxial stress—
strain relation for room temperature graphite as shown in Fig. 2 and
as described in [10], Ct1], Tiz], [13]1, [14] are now described.

It is evident, from Flig. 2, that the s+ke$s is some monotonic
increasing continuous function of the strain so long as the load is

applled monotonically. This implies that along the curve C ’

™ = f(B), (.n



where TV is the stress, E is the strain, and 'F is a monotone

continuous function of its argument., |f the specimen under consider-

ation experiences a reversal of the applied load at point A on the
*

path C: , the material will exhibit a permanent set E:G“ when the

load has been completely removed. The permanent set is a function

only of the maximum strain achieved prior to the unlioading,

EX¥(A) = 9 (EQA) (1.2)

where <a is a function of its indicated argument. Implicit in (1.2)
Is the assumption that the permanent set E??ﬁﬂ is dependent only

upon the strain at the point of unloading. Similarly, for some other

point B on C ,

E*(R) = %(E(Bﬂ (1.3

An indication of the dependence of the permanent set on the strain
at the point of unloading will be discussed later.

If the specimen of graphite is reloaded at the point with
coordinates (E*(A\,O) (see Fig. 2) the reloading path will be different
from the loading path. The important thing to observe in this case
is that the relcading'chve has a shape different than that of the
unloading curve, and these paths do not coincide as they do for an
elastic-plastic material. Thus, we have a hysteresis loop formed
by the unloading-reloading process.

Consider a speéimen of graphite in its undeformed state.

Then if it is loaded and



dE C(18)
% >0

for the entire process, and fracture occurs at the point F » where
E(F) is the value of the strain at fracture, the path C will be
fol lowed until the strain E(F) is attained. The form of the one
dimensional stress-strain relation to the point of fracture will be
derived later on in our analysis,

Let the material be unloaded at some point A on C swhere

O< E(MK E(F). (1.5)

This will result in a nonlinear unloading path. Unloading at some

other point B on C,

E(A) < EM® < E(F) (1.6)

will result In another unloading path which will not, in general, be

parallel to the unloading pa‘l'h'from' point A on C , and

E¥(B) > E*(A) SRD)

* .

Reloading at (E(AO) will result, in general, in a nonlinear path
which may not pass through the point /\ on C , but wiltl intersect
C, at some small distance, d s, to the right of P\ °

¥, however, upon reloading from (E*(B),O) , the previous
maximum strain E(B) is not attained, but the strain E(H) is

*

reached, then the unloading path from H to E (B), as shown in Fig.
2, is followed. A most Interesting property of graphite is that it

behaves like an elastic material insofar as there is no further change



in tThe permanent set for strains which do not exceed a previous
maximum strain, In fact, if we let a specimen of graphite be loaded
to E(R), unloaded to EX( A) and then loaded and unloaded to these
two points a total of n~times, the loop bounded by E*(A\! and E(A)
will then be traced out n~times. For this reason graphite may be
considered an elastic material in the above sense.

0f the mechanical phenomena observed in graphite one of
the most significant is its rate independent behavior. All uniaxial
loading programs, short of impact Intensity, which achieve a given
fixed strain will produce the same stress-strain curve C:,
Consequently graphite is classified as a rate independent material.
The condition of rate independence automatically rules out the
possibility of observing any time dependent phenomena such as creep
or stress relaxation in graphite. Consequentliy, and without any loss
in generality, a convenient uniaxial loading program may be chosen

to represent any actual uniaxial loading program.



I, MECHANICAL MODELS

In an attempt to better understand the mechanical properties
of room temperature reactor grade graphite, several mechanical models
will be constructed. These models are presented here in order to
obtain an intuitive understanding of the mechanical properties of
graphite., The models which will be described below have various ad=-
vantages and disadvantages. A disadvantage common to all these models
is that they are one dimensional, Three dimensional relations can be
developed within the framework of the incremental theory of plasticity
which reduce fo the equations obtained for the one dimensional
mechanical models ~ an interesting method of doing this is given by
lwan [15], Three dimensional models have the disadvantages of not
appealing to our intuition, being difficult to construct and yielding
unwei ldy equations, The models which follow are simiiar to one
another In that they may be constructed using only two elements, the
spring element and the friction element [9], [I6], [17].

The spring element is defined as that element whose defor-
mation, at any time, is a function of the total applied force. This
element is pictorally represented in Fig. 3. The applied force is
denoted by A » and JZ is the length of the spring at the present
time. Let 12' be the length of the spring initially, or the length

of the spring when /\=<3 o Our definition requires that,

A=F(E) 2.1

where E:ﬂ;‘ﬂ' is the elongation,



For the special case when (2.1) represents the applied
force as a linear functions of the elongation, the spring element
becomes the usual Hookean element. The following expression des-

cribes the Hookean element,
/\=: k Ei (2,2)

where k Is called the spring constant.

The friction element, or friction block, is pictorally
represented in Fig. 4. The friction block is sometimes called the
St. Venant element. |f the magnitude of the applied force F\ is
less than the maximum possible force between the block and the plane
it rests upon (the critical value b ), Then‘*he applied force will
not be of sufficient magnitude to move the block, This may be ex-

pressed by means of the following relations,

iy IAl<b,  then E=0
W A 2b  tren E>O (2,3)
4o A <-b, then EZLO

The following model has been constructed in order to give
a qualitative description of the hysteresis loop exhibited by a
graphite specimen when continuously loaded in tension and compression.
The model consists of three elements, two elements being Hookean and
the other a friction block, This is illustrated in Fig. 5.

Let E1 be the deformation of the spring with constant kj R
and let EE. be the deformation of the spring with constant kz_a

The total deformation will be E , where



E = Ea* E, (2.4)

The mathematical description of this deformation is given by the

relation

A=k, (E-E,). 2.5)

» »

The deformation Ez may be determined by integrating E.,_ o E,_

is given by the following description,

A-KE, =b and A0 impy kE,=A

A-k,E, =b oand ALO impy E,=0

A-k,E, =b ana ALO mply |<,_E,_=A (2.6)
A-kE, =-b ard A>0 imply E,=0

|A-k,E,] < b implies E, =0

These properﬂes are represented by the stress-strain diagram in
Figo. 6. It can be seen from Fig, 6 that when the graphite sample
is loaded in tension the stress-strain curve will follow the path
OF as the spring with constant K , deforms and the l|ower ele-
ment remains stationary, The instant point F is reached the
critical value b is attained and the lower element of the model
will begin to move, tracing out the path FB. 1 f, however, the
applied load is removed at point B s the lower element will once
again become stationary and preserve its maximum deflection EZ(B).
It is, of course, assumed that the force of the spring with constant
kz is less than b . The path BC will then be traced as ‘The
spring with constant |(1 returns to the unstressed sfa"reyo At this

point, the total displacement is the displacement in the lower



13

element, I|f the material is reloaded, the path BC is again
followed and continues along BD .

if, instead of assuming the spring to be linear, it is
assumed that the general relation (2.1) holds and the general rela-
tions corresponding fo (2,3} are obtained, a stress~strain curve
analogous to the one shown in Fig. 6 is obtained. This curve is
shown in Fig. 7. The interpretation of this behavior is analogous
to that given above for the linear model. This model is a better
description of the properties of graphite than the linear model,

I+ can be seen that this model has the advantage of not
allowing for any time dependent properties in the material. Thus,
the material represented by Fig., 6 or Fig., 7 will not exhibit the
properties of creep, stress relaxation, or dependence upon the rate
of loading. A major drawback of this mode!| is that while it may be
capable of quantifafivéfy duplicating a given stress-strain curve
for graphite by defining the appropriate function in (2.1), it does
not predict a perménen? set for any applied stress less than b .
Thus, one of the most disfinguishing:properfies exhibited by graphite
is beyond the descriptive powers of this simple model.

A mode! proposed by Jenkins [6] is now coqsfrucfedv Jenkins
qbserved that the stress-strain curve for polycrystalline reactor
grade graphite at room temperature is parabolic for small strains.
He Then constructed a model which yielded a parabolic law. This
theory did nbt, however, predict a method for determining the value

of the quadratic coefficient.



Jenkin's model is based on the assumption that when
graphite Is subjected to stress cycling under low compressive
stresses the applied stress is large enodgh to only produce plastic
deformations in just a few isolated parts of the structure. The
mechanism of deformation is assumed fo be plastic yielding. This
plastic deformation is limited by a restraining elastic matrix.

The parts of the material undergoing plastic deformation are
imbedded in the restraining matrix and these parts cease to deform
as soon as the applied stress within each matrix is decreased below
The yield stress b , of these areas.

The mechanical model for this type of deformation is again
made up of a series of fricfion‘blocks and spring elements. Here,
However, each block is backed by a spring, as shown in Fig. 8. Here
the block will move only when the applied force A exceeds the
frictional force p - The motion of the block will then cease when
the elastic reaction in the backing spring is built up until it
?eachés“ A-b a‘ The generalization based upon the above assumption
is an extension of the model in Fig. 8, It is a series of equal
friction blocks alternating with equal backing springs. As can be
seen in Fig. 9, as the applied force A increases more blocks begin
to move with each block building up a back stress in its backing
spring. I|f the applied force is removed, the first element will
relax only when the stress in the backing spring can overcome the
friction force of the blocks

Applying this, Jenkins obtains the relation,
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E-= kaA ' A% (2,7
where kf'g'g' is the inverse of Young's modulus at infinitesimally
small strains, The quadratic coefficient, kz , cannot be quanti-
tatively determined from Jenkins' theory. Jenkins also presents an
equé?lon which describes the unlioading path for small strains in
terms of a quadratic law,

Woolley [8] has obtained a mathematical representation
which predicts, accurately, the loading path of graphite. Whereas
Jenkins' model is valid only for small strains (up to 0.25%) Woolley's
mode! provides a good fit for all values of strain and predicts a
finite compressive strength. Woolley, however does not attempt
description of the unloading curve,

Woolley assumes that a given specimen of graphite will con=-
tain N, dislocations distributed throughout its interior when a
given stress is applied, As in the previous mechanical model, each
dislocation can be thought of as being represented by a friction
block, Since the movement of each dislocation is limited by a
restraining elastic matrix each friction block will be backed by a
Hookean element. Let the yield stress of each dislocation be b.
It then follows that a given dislocation will remain stationary
when the force on that dislocation is less than b . When the force
on the dislocation is greater than b each dislocation will move a
distance £ . Taking the average over all the dislocations in the
specimen by defining an appropriate distribution function, Weoolley

obtains the relation,



A= YE, [ 1- exp CE/E,)) (2.8)

The constants Y and Eo depend on the elastic moduli of the stress-
strain relation for graphite, the method preparation of the graphite

specimen and {ts degree of preferred orientation.
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t11. MATHEMATICAL PRELIMINARIES

A, Constitutive Functionals

Let a graphite specimen G occupy a specific region in a
three dimensional Euclidean point space. We may consider G to be
made up of elements, which are called particles of G . Let X be
the position vector of a generic particle C of & in Euclidean
space, Now if G is deformed in an arbitrary manner, then at some
time 7 the generic particle XX will be at the plaqe which has the
position vector | X . The motion of the generic particle from 2C

to X is denoted by,

x= XL, (3,19

Thus, the funcﬂon Y. defines the deformation process. Assume that
at the present time 1 , the state of stress &(t) at a material
point is a function not only of the deformation gradients at time t P
but also a function of the values of the deformation gradients at all
times prior to T . Here the deformation gradient F(X ) s
defined as the gradient of %(X,Z‘) and is a second order tensor,

in coordinate notation the deformation gradient at time t may be

written as,

O X
F‘j‘ x‘b}(){”{;}: gjq (3.2)

Thus, it is assumed that the material response is dependent upon the
entire history of its deformation gradients and a material of this

type is called a history dependent, or a memory dependent material

Cied, [tod,

17



The present state of stress in graphite is expressed as a
function whose value at any point DC at time 1t is explicitly
expressed as the result of some operation upon the infinite set of
values assumed by the deformation Qrédlenfs over some continuous
function of time., Such an expression is termed a functional. Hence
the present state of stress in our material may be written as a
functional of the deformation gradients F over the time interval
~00 < "<t . Using the notation invented by V. Volterra [20], this

is indicated by
T=t
c(¥)= g[l;(?‘)] . (3.3)

Let us assume that our graphite specimen has been physically
standardized for use at some time, say ¢°= O . In our case this
might correspond to the time at which the specimen of pryolitic
graphite was removed from its oven, This allows us to rewrite the

constitutive equation (3.3) as,
T=%
o (b)) = F[F(2) (3.4)
=0 ,

The principle of objectivity requires that all constitutive
relations be independent of the observer. Application of this princi-

ple allows (3.4) to be rewritten in the form [18],

(= R (Do (HRk)= ?[gfgﬂ

(3.5
T=0

where T (L) is the Plola~Kirchoff or rotated stress tensor. R is

the rotation tensor obtained by a polar decomposition of F . The



polar decomposition theorem states that Fz=RUW where U s the
right stretch tensor, is positive definite and symmetric and the

rotation tensor R is orthogonal, E. in (3.,5) is defined by,

E(D)= & (LA(D)-1) = % (FI(IFT)-1). (3.6)

le is called the right Cauchy-Green fensor and E is the strain
tensor. The above restriction due to objectivity, replaces arbitrary
functional dependence upon the nine components of [ by arbitrary
functional dependence upon the six compoﬁen'i‘s of E , since E 1is
symmetric,

The constitutive relation (3,3) can be taken as the
definition of a simple material. The assumption that a material is
simple is an assumption of a very general nature. Indeed, most
material theories are subsumed by the theory of simple materials,

For example, the theories of |inear ahd nonl inear viscoelasticity,
the theory of dislocations and various Spécial theories are derivable
within the framework of the theory of simple materials.

B. Rate Independence

Thus far the material has been allowed to be dependent upon
its rate of deformation. By observing the properties of graphite
one can conclude that while the stress may be dependent updén the
deformation gradients it is not dependent upon the rate at which
the deformation is executed., This is analogous to the theories of
classical elasticity and plasticity where the rate of deformation
does not influence the stress. If the assumption of rate independence
is applied to the constitutive relation (3.5) certain simplifications

resuit,
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in order to make the hypotehsis of rate independence expli-
cit in the constitutive relation (3.5) the strain history E(T),'Z‘)‘O
must be specified in terms of its path in E -space and the rate of
traversal of this path. E =-space is defined as the space formed by
the components of the strain tensor.

Following the theory of rate independent material as deve-
loped by Pipkin and Rivlin [21], the arc length S(7°) which has been

traversed up to time U may be defined by,

v
_ dE(T)  JdET) ’ (3.7)

(]
This function increases monotonically for all admissible inputs E(?).

The fleld path in E ~space is described by giving the dependence of
E parametrical ly upon the arc length. {1 has been assumed that the
material was physfcal ly standardized at 720, thus all paths begin
at zero strain, i.e. E(0)=0, and =9 when T=t.

A rate independent material described by (3.5) may be

written as
FLE (2] = FLEC)) (3.8

for all transformations
s= o (zu) {3.9)

where § Iincreases monotonically in time. The function (3.7) is

obviously a time invariant function. Thus we may write,



5= 9 .
(N = FLEE) (3.10)
$=0
Hf E¢s) is differentiable at each point on the strain path and

E(0Q)=0O , then (3.10) can be written as

5=
m(N=Hl dE(S)] @\:E(S)__l (3.41)
S=0

Due to the fact that a rate independent material does not
exhibit any explicit éependence upon time, it is infuitively clear
that the constitutive relation (3.11) will not allow for any time
dependent properties such as ageing effects, creep recovery, or
stress relaxation,

It is easy to show the validity of the above statement.
Conslider for the moment an arbitrary rate independent material whose
constitutive equation can be either (3.,10) or (3.11) in as much as
(3,10) and (3.11) are equivalent. Now a material obeying (3.10) is
defined to lack ageing effects if the mechanical properties of the
material in its undeformed state do not change in time, This implies
that 1f ageing effects are present they must take the form of
chemical or structural changes in the material, since by (3.7) S(?°)
will be zero for all times at which no strain is applied. Thus,
there can be no change in the state of stress in the undeformed mater-
ial since there is no input to the material in its undeformed state,
This means that the constitutive equation (3.10) will not allow for
ageing effects, because in (3,10) a non-zero input is required to

produce a non-zero output,
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A material s said to lack the property of sfress'relaxa-

tion if after the removal of an applied strain an instantaneous
stress recovery is now followed by a gradual stress recovery. We
will show here that there can be no stress relaxation at constant
applied strain, It is obvious from (3.,7) that if the strain input

Is constant the change in the strain with respect to the time variable
will vanish and the arc length will remain consfanf. That is, since
f?%} vanishes for any constant strain input, there can be no fur-
ther Incfease‘in the arc length. Thus, if the material is loaded to
a fixed value of strain and then, at time t,, held at that fixed

value until 1; , The equality

SIED) - RIS (3.12)
$=0 =0
must be satisfied for all 3-:5, provided 'i'haf no further strain Is
applied. Thus, it has been shown that any rate independent material
will not be able to exhibit the property of stress relaxation under
constant strain,

A material is said fo lack the creep recovery property if
upon removal of an applied stress an instantaneous strain recovery
is not followed by a gradual strain recovery. In order to discuss
the phenomenon of creep recovery it is necessary to have a stress
input. Let us, therefore, assume that the constitutive relation
(3.10) may be inverted. In this case we may write (3,10} in the

~form,

E( =YL nes). (3.13)
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The arc Iengfh'musf now be redefined if the stress is to be the
input. Since the arc length is defined on the input space it must,
in this case, be defined on the stress space in order that (3.13)

be consistent with (3,10), Thus the arc length is defined by,

13
! N 2
o(2) = [g_m(’a">_ dW(z')]zdz_,

dz! a7 (3.!4)

(o]

where as in the previous case an inner product operation is indicated,
With this definition and the constitutive relation (3.13) It can be
shown that the material will not exhibit any creep recovery proper=
ties. All that need be done is to follow verbatim the discussion on
stress relaxation.
C. Functional Approximations

The start of the twentieth century saw certain investiga=-
tions made by various French mathematicians into the nature of
functionais. The most prominent of these were M., Frechet, his
principal advisor J. Hadamard, and R. Gateaux. They showed that
under certain conditions a functional could be represented as a sum
of a series of multiple integrals. Frechet [22], [23], in particular,
showed that if L is a linear functional defined on a set of
functions which has the property that if the functional W (f,)
converges to Ud whenever 'Fn converges to 'P uniformly, then W
can be represented by a Fourier series.

V., Volterra [24] used a representation similar to
Frechet's and showed how history dependent phenomena, represented

by functionals, give rise to noalinear constitutive equations which



24

may be represented as sums of multiple integrals., Volterra then
applied his results to history dependent physical processes in
elasticity, electromagnetism, and other areas of physics.

Green, Rivlin, and Spencer [19], [25], [26], presented a
falrly rigorous treatment of three dimensional constitutive equations
for materials with memory. They assumed that the stress tensor was
dependent upon the enfire history of the displacement gradients.

They then represented the constitutive functional, using Frechet's
theory, by means of a sum of multiple integrals of the deformation
history with certain material functions as kernels. It was also
assumed that the material was at rest before time bt =0 s requiring
the domain of the constitutive functional fto be in the space of
bounded deformation histories,

Chacon and Riviin [27], by making use of the Stone-
Welerstrass approximation theorem [28], have shown Thaf any con-
tinuous functional can be uniformly approximated on a subset of D
by a polynomial in linear functionals from L. , where D isa
topological real Hausdorff vector space of tensor-valued functions
and L is a subspace of functionals which distinguishes elements
in Do

Lew [29] improved upon the results of Chacon and Rivlin
through a more subtie use of the Stone-Weierstrass theorem. Here the
conditions imposed upon the functional are less restrictive than
those imposed by Chacon and Rivlin., In particular, Lew ;hows that
the functional must only be uniformly continuous in the weak

topology defined on D by L. .
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T. T. Wang [30] derived the integral representation by
means of Gateaux's theory of functional representations [31].
Gateaux's method seems to provide an adequate description of the
phenomenological processes taking place within the material while
at the same time yielding the standard form of the integral
approximation,

in the following section we will present a particularly
simple formal method for deriving the integral approximation.

D, The Black Box Problem

The black box (Fig. 10) is defined as anything which acts
upon an Input and produces an output [32]. It is not known why
boxes are black, but as Wiener [33] states, "boxes are ex officio
black." The black box problem was first formulated, in its general
form, by electrical engineers, An electrical engineer is given a
sealed black box contalning an unknown assembly of electronics,

The black box has terminals for applying inputs and other terminals
for outputs., The engineer may then apply any type of electrical
input he can generate and then measure any output his equipment is
capable of measuring. His problem is to determine the contents of
the black box by this method,

Problems of this nature are of fundamental importance in
many scientific fields. In fact, much of the research on the black
box problem is being carried out in the life sciences.

The analog of the black box problem in the mechanics of
continua can be posed as follows. Suppose we are given a black piece

of some unknown material, then the problem is to determine the
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nature of the material by applying certain Inputs (stresses, strains)
and by meésurlng the corresponding ocutputs (strains, stresses),

To be more specific, we must determine the constitutive equation of
the unknown material by experiment.

Let us take an unknown, possibly nonlinear, material which
Is represented by the black box in Fig. |0, Aésume'fhaf the input
to the material is the rate of change of strain with respect to the
arc length and that the corresponding output is the stress. This
means that the constitutive relation (3.11) describes this process.
In general, the present state of stress of a nonlinear material depends
upon the strain rate history In a nonlinear manner.

The history of the strain rate can be expressed in terms
of a system of quantities, which may be infinite In number, and which
exist at the present time. No assumption is made concerning the
nature of these quantities, ‘ALl that is being said Is that the
history of the input to the material is expressible in terms of
certaln quantities. Since the material is nonlinear, the present
output, or the state of stress, may be expressed in terms of a
nonlinear operation upon this set of quantities.

Let us see what can be said about the relation between
input and output without any further assumptions. This problem has
been studied by many authors [33], [34], [35], [361.

We have asserted that the strain rate history Eé(s) can be

described by means of the quantities,

W, (D), W, (S), W, ($).ees, (3.15)
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evaluated at "ftime" § « Thus the present state of stress may be

written as
()= GOW,S),WHWo(§), -] (3.16)

where Cr denotes some nonlinear operation.
Let {h‘.( S)} be any complete orthonormal set of functions,
-
| £
1 =)
o h;(s)hJ(S) ds= 0l .\';!‘:: . (3.17)
é(s) at any ftime in the past may now be expressed as an expansion

in these orthonormal functions,

]
E¢s) =Z W) hs (8) (3,18)
=0

where w.-(§) is the coefficient of the i-th orthonormal function in
the expansion. Since the set {h;(‘s;} is composed of known functions,
the coefficients {W;@)} completely describe E(S) from the
remotest past up to the present time. Thus, if the coefficients are
known we can reconstruct the entire strain history.

The unknowns, in this case being the coefficients {W;(@)},

may be determined as follows, Multiply (3.18) by hj(s) and obtain,

Q0

l'nj(S)é (=Y W; (Dh; (9)h;cs). (3.19)

=0
Applying the orthogonality property (3.17) and integrating (3.19)

over & vylelds,

6 []
Wj(§) =fh5(s‘)E<3') ds . (3.20)
[
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In general {,W‘\(sg? will be an Infinite set.
Now assume that the nonlinear operation C; in (3.,16) is a
general polynomial in the W; (§‘) « Thus the Piola=Kirchoff stress

tensor may be written as,
o0
T ()= a+§b W, ()+ Z S W; ()W, ()+eeens (3.21)

"‘Z %J....Wg(é)wj(&....ﬁ-....

a)"c
Here the coefficients 8, bg s Cij secey ﬂ'.) yessye.ey completely
describe the nonlinear operation, and we have the stress state in
terms of the strain rate history. Now substitute (3,20) into (3.21)

and the polynomial becomes,
7"(&)“ a+ Zb / h; (S;)E. (51) 5\31 +

) (3.22)
cufh(si)E(sq)dsﬂfh (sz)E<S s, +....
|,)" ©

The order of integration and summation is now interchanged to obtain,

3
)= a+ / d31E (spz o;h; (5 )+

é
(3.23)
d31 o\s E(SQE (‘-‘mzcuh sph; ().
JJ"
We may, however, write the summations as,
Z Qi -+~ i GRS .. .= K(sy,5,,.0). (3.24)

JJ -=0



Substituting (3.24) into (3,23) yields,

o N9
W§>>=a+; Kn(51,55,020,8,) E(5D..Esads,.ds.  (3,25)
i AQ)
The nonlinear system is now completely described by the kernels
Ka(®4,-yS ) « If it assumed that the stress state of the

material is zero at t=0 s then the constant term, & , must

vanish in equation (3.25) and equation (3,26) is obtained

. P
™ =Z Ka(3y, szx...,sn)é(si)..,ﬁ(sn)dsi...dsn . (3.26)
Nz}

o)

E. The Relation ‘o Plastic Work Hardening |

The arc length parameter we have ‘been using may be com=-
pared to the strain hardening parameter of plasticity theory. In
the classical theory of plasticity the total strain Eij is decom~

posed into a plastic strain P; and an elasﬁvc strain Q

ij ij o
The elastic strains are related to the stresses by Hooke's law, The
relation between the plastic strains P;j and the stresses are

glven by the constitutive relation

O for unloading

P.. = (3.27)
l L4

‘F(ﬂ;\", P;:ﬂ ’“\:J for loading

where ﬂﬁ denotes the deviatoric stress tfensor.

29



Thus it can be seen that in order to make use of a consti=-

tutive equation of the type (3,27) it becomess necessary to give preclse

meanings to the terms loading and unloading, especially for general
three dimensional programs. In our theory, as can be seen from
(3,26) there is no need to arbitrarily define a process as a loading
or an unloading process. This is because the terms in (3.26) which
involve the strain rate have components which change sign when the
direction of straining is reversed. Thus the relation (3.26) auto-
matically takes care of specifying whether or not a particular process
is a loading or an unloading process. Also each component of the
strain rate matrix may change sign independently of the other com-
ponents. Indeed, processes in which the signs of the components of
the strain rate matrix change arbitrarily and at different times are
possible within the formulation (3.26) without having to define a
particular process as an unloading or a loading process.

The plastic strain hardening parameter Z is defined in

terms of the plastic strain rate,

?
z=/ (P, P, Y% d7
Joy * (3,28)
(-]
The yleld condition is assumed to be of the form,
fen' 2) = F(T) = W), (3.29)

where the temperature is not taken into consideration.
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A deformation process is said to be strain hardening if,

%“2‘ =20 . (3,30)

A deformation is defined to be a loading process when,
f=0,-0, and 2> 0 . 3.3
The loading condition may also be expressed as
’%-:ms TY;3> @ (3.32)

tf the onset of plastic flow Is described by means of the

von Mises yield condition,
femty = b —k2=z0 (3.33)
J J
then the plastic strain rate may be determined by means of the
following relation

4
- "T\’-,; ’D'@
P

/
ij= m%jld% . Wimﬂ"“ (3.34)
where iT is assumed that the material is incompressible and
independent of temperature.

The above discussion of strain hardening plasticity points
out the similarity between the arc length parameter S and the strain
hardening parameter Z . It also points out the advantage of our
formulation (3,26) in that we have no need to define a process as
being either loading or unloading.

In (3,26) consider only the linear term of the expansion.

In this case the kernel function can be suitably chosen in order tfo

+



32

achlieve equations similar to those of strain hardening plasticity.
In fact, if we work with only the plastic strains and deviatoric
tensors a theory equivalent to strain hardening plasticity can be
obtained, |f the kernel function is chosen to be a Dirac delta
function a special form of strain hardening plasticity is obtained.

The object of both the arc length and strain hardening
parameters is the introduction of some degree of irreversibility
into the description of the mechanical behavior of the material. A
consequence of this irreversibility is that a stress=strain curve

7T‘='P(E) cannot be retraced even if the variation of the strain
E Is reversed.

We have here, in effect, asserted that a given rate
independent material will have its own intrinsic time, © or 2 ,
associated with 1+, And by means of this time, which will in general
be different from the actual time, we can more naturally represenf“
the mechanical behavior gf the material. That is, the consfifuTiVE
equation expressed in terms of the intrinsic time will be a more
natural representation of the material than a constitutive equation

expressed in terms of the actual time.



33

V. THE SCALAR THEORY

A. The Straining Program

In this section a one dimensional theory is developed
whose purpose it is to obtain a relation between the scalar sfress'
and the scalar strain., Thus, this theory is an attempt to describe
the stress-strain relation which is obtained in the laboratory,

This stress=-strain relation is obtained by pérforming a simple
uniaxial tension or compression test, The result of just such a
cyclic test is {llustrated in.Fig. 2.

In order to completely describe a one dimensional cyclic
stress=strain relation, two strain parameters must be prescribed,
The first is the maximum strain, A , achieved prior to unloading,
and the second is the permanent set E*( A). 1f more than one
unloading will be considered, then these two parameters must be
prescribed for each loading cycle,

Assume that a rate independent material has been strained
at some given rate v , and that this straining process has taken
the haferial from its undeformed state O +to some value of strain,

A » (see Fig. 2), The effect of this deformation process is best
seen by observing the stress—strain curve for the material which
begins at the origin 0] s and ends at point A .

instead of straining the material at rate ¢ , assume that
the material had been strained at the rate r . |f this new defor-
mation process also takes the material from its undeformed state o,

to the point A , then the same locus of stress-strain points,



obtained above by deforming the material at rate Y , would have been
obtained. Indeed, for a rate independent material, any straining
program which deforms the material from its undeformed state 0 s To
the point /\ s monotonically, will trace out the same unique path.
Similarly, for the release of strain, any rate P of release of
strain will be equivalent to any other rate P' of release of strain.
This means the path between A and E*( A) Iﬁ Fig. 2, is independent
of the rate of release of strain. Also, the restraining path will be
rate independent and so on for successivé processes. Therefore,
without any loss in generality, the straining program, [llustrated in
Fig. lla, may be hypothesized for the cyclic stréss«strain test.

The straining program shown in Figs [la is defined by,

E(P)=m7 O£T&<% (4.1)
E(?)= m[-l-"%-%(\(-fl)'l‘“‘], B4 T e (4.2)
E(Z‘)=m[2‘—1+%—} T2 (4,3)

where for our purposes it is assumed that

O<k€1and m>0 . (4.4)

°

For this program E changes sign at T’:’Iﬁ and again at =1 .
Bullt Into this program is the condition that the material will not
return To its undeformed state, when the applied load is removed,
The extension of the material, relative fo its undeformed state,
observed when the applied{load has been removed is called the
permanent set, or the residual deformation, This corresponds to the

actual behavior of graphite which has been previously described.
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In Fig. lla the relative maximum strain occurs at T= \’2
m *
and its value is 72 . The permanent set E is the value of

the straln at 2= 1 , or

E* = k(m/2). (4.5)

Thus K represents the fraction of the relative maximum strain
which remains as the permanent set.
It can be seen from (4.2) that if K were allowed to be

unity we would have

E =M (4.6)

in tThe time interval yZQ’Z‘ & 1 ., This means that, independently
of time, the value of the relative maximum strain would be retained.
In short, when k=1 the material experiences no elastic recovery,

I f k were to vanish, then we would have from (4,.2),

E=m(1=-7) (4,7)

This means that there would be no permanent set for ‘=1 and hence
the deformation could be considered as completely recoverable,

let us look at some of the properties of the program
(4.1y to (4.4), By equation (3.7) the value of the arc 3eng'th for

straining is,

v’
S(T)___.\/ Al T . Al T O\T, (4.8)
o]

aT az
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T
:/de! =m7 . (4,9

6

Thus for straining, 2‘=€5/m when
04£3<"2  and LT &2 (4.10)

The value of the arc length parameter for the release of

strain process is,

%
8(?)= /[_é_ X +Z"(k—1):2‘ . .
mﬁz:‘&‘“% d%,{mm 3 ] 4.1
% ¥
fl%: {m@w%»w% kn’l)]j dz”=%+f.‘ /-1 47’ =
' %

=Ltk = Pemd-k1z -5 (1-K) =

®

ré\s

=Y-“2—“—+ m(1-K 7 (4.12)

Note that the sign of the square root of m?(k-1) 2 in
(4.9) was chosen so that the arc length would always be pdsiﬂvé and
hence would always be a mono*l‘onié increasing function of time., For
the arc length to be otherwise would be meaningiess. Thus for the

release of strain process the arc length is given by (4.12) when

5 £ 5 & (rn-km/2) and B & 41 (4.13)

where Kk is less than one and positive. Rewriting (4.12) we have



2S5 —kKm
T=Z2m (1-K) (4.14)

in the time interval 24T < 1 ,
For the re-straining process we have

K Kk
s()= [—Y%—+m (1- 3‘)2’%%’=1 +

% ,
“‘\/'\/"5%,« [m(?‘ul-&-‘%'):} a%z/' [m(’&‘-i‘*%‘ﬂ dz'! .15
1

or

s(?’):m?’um(%‘) (4.16)
and

V= = +—§-, for 2>1 and s>m-m(f§).

At this point [ (S) can be written for the cases of

straining, release of strain, and re-straining.

For straining, E=m%=s, 0%£5% é% (4.17)
: k
For strain release, Etm-«%% %’% £ sEm (1“3:) (4.18)
Sk, szwmci-k
For te-straining, E=m(dm+K-1, s=2wm(l-3) (4,19)

Thus given a monotonic increasing straining process and
a monotonic decreasing release of strain process, only the relative

maximum strain parameter, % » and the value of the permanent set,
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Wﬂ%ﬁZ , need to be given in order to completely describe the history
of the deformation process. This means that when we specify v and
K we specify the strain history,

B, Linear Term Analysis

Let us look at the previously derived integral approximation
(3,26), We assume that the material under consideration is stress
free in its undeformed state, From (4,17), (4,18}, and (4.,19) we see
that é_(S)zi for straining and E(S)f'l for the release of strain.
in order for (3,26) to accurately describe a program of the Type
shown in Fig., lla, it should feel the effects of the release of strain.
The even ordered terms in (3.,26) will not, however, feel these effects,
i.e, The even ordered terms in (3,26) cannot tell the difference
between a straining and a release of strain process. Thus we are led
to conclude that if we wish to accurately model the mechanical
behavior of graphite by means of (3,26), the even ordered terms in
(3,26) should be omitted,

There exists a strong possibility that certain fypes of
graphite may need, aside from the linear ferm, higher terms in order
to accurately describe the behavior of graphite under cyclic
straining programs. Here, however, we week fo ascertain as to
whether or not the linear term in (3,26} is capable of describing
the qualitative mechanical properties exhibited by graphite under
cyclic straining programs,

The linear Term in the approximation (3.26) is,

E
ﬂ(§)=fk(5) E(s)ds (4.20)
(¢}
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The strain history is known from experiment and therefore E( S) may
be found by applying (4.17), (4,18}, or (4,19), Now the form of the
kernel function must be determined. Equation (4.20) states that an

increment in strain, dE (S) produces an increment in stress

AN () = k (50 E(9) (4.21)

which is independent of the values of the strain outside of the
interval (S ZS+d3) .,

From our experience with graphite we can make a good guess
as to the form of the kernel function. If k(S) is constant, then

we have,
T (= KED (4,22)

where K' s a constant. This is a theory of elasticity, since the
stress is a function of the strain.

Now i1f Kk(s) Is a Dirac delta function, then we obtain,

" = k“E(&.) (4.23)

where k" is a constant. This is a form of work hardening plasti-
city, where the stress is a function of the strain rate. Both (4,22)
and (4,23) are inadequate for our purpose,

We now assume the form of the kernel function K(S) which
will be used in the subsequent analysis. In the discussion that
immediately follows, one must always keep in mind that while the
variable, S , is time=like due to the monotonic property of 9 ,

it is a function of the applied strains and not of time.



The form of the kerne!l we will employ to model the cyclic

one dimensional mechanical response of graphite Is,

K= C-CXP{[&+ bn(1-k) g—bs} (4.24)

where N is the number of complete reversals in the straining pro-
cess and 3 is the value of the arc length parameter which corres-
ponds to the previous maximum strain experiented by the graphite
specimen, The mo#iQaTion for choosing the kernel function (4.24) fs
due to the consideration of two facts. First, Woolley [8] showed

that a one dimensional constitutive equation in exponential form was
able to describe the uniaxial Joading response of graphite exceedingly
well, Second, the kernel function must be chosen so that the dependence
of graphite on the previously attained maximum strain is Incorporated
into the constitutive equation., This is accomplished by including N
and g in the constitutive equation.

At this point let us see how well or poorly some other kernel
functions, similar to (4,24), mode! the mechanical behavior 6* graphite.
Also, by analyzing the properties of these kernel functions we shall
see where They fail in describing the mechanfcal properties of graphite
and obtain an indication as to what is needed in order fo accurately
describe graphite's mechanical behavior, It is partly by analyses of
this type that the kernel function (4.24) was chosen,

Let us consider a simplified form of the kernel function

(4,24),
K(sy=c- exp (-bs), (4,25)
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With this choice of kernel function the linear constitutive relation
(4.20) for straining, becomes
8
T (S)=¢/ exp (=bs)ds , (4.26)
o]
where we have used E(S)=+ 1 for straining. By carrying out the

operation indicated by (4,26) we obtain

T (S = ¢ [1-exp -bH) . (4,27)

i+ is at once evident that (4,27) is essentially the same
result as (2.8) obtained by Woolley from dislocation theory consider-
ations, Woolley has shown fthat a stress-strain relation having the
form of (4,27) is an excellent fit to the straining compressive
stress-strain data for graphite,

Let us see how well a representatiott of the type (4.,27)
will represent the mechanical behavior of graphife for the release

of strain process. For the release of strain we have

§
C
M= E [1— exp(-%bm)] v ¢f expCbex-1)ds. (4,28)
%
In (4,28) the term é( 3 =°1 corresponds to the release of
strain process and 5="9’2 when "= 1/2. « Integrating (4,28)

and combining terms yields,

() = %‘[1—‘2&yp(~%bm§+ exp (-b$Y]. (4.29)



While, as we have noted above, (4,27) will accurately
describe the stress-strain curve for graphite for the initial
straining, the counterpart of (4,27) for the release of strain pro-
cess (4,29) is not an accurate déscripffon of the observed phenomena.
The reason for this is sﬁown in Fig. 12, In Fig, IZ we see that the

strain release curve intersects the straining curvé well above the
stress axis., This is a phenomenon which is never observed in graphite.
Thus we conclude that the kernel function (4.25) fai!é in describing
the cyclic straining behavior of graphite,

The next kernel function we consider will also be seen to
fail at describing the mechanical response of graphite., It is pre-
sented here, however, because it is felt that a represénTaTion using
this kernel function can be applied to many other materials.,

This kernel function is,
K($-9Y= c-exp(a§-bs). (4.30)

The |inear functional (4.20) with the kernel funéfion (4.30) can be
thought of as a |inear theory of rate independent viscoelasticity.
Whereas a viscoelastic material will have a fading memory of
deformation, our material has a fading memory of the rate of change
of strain with respect to the arc length.

With this kernel function we have for the initial straining,

(3= C/exp (a$-bs)(+1) ds (4.30)

[+

=% exp(aNfl-expl- bS] . (4.32)
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In order for the.stress~strain relation (4,32) to have the properties
exhibited by room temperature reactor grade graphite it is necessary
that the second derivative of the stress be less than zero for all

values of >0,
From the condition that the first derivative be greater

than zero we obtain,
exp (-b§)< a/(a-by . (4.33)

This implies that

b> o (4.34)

For the second derivative we have

d?T 4271 ¢

dE? 452~ b [aﬂexp(aé)-(a-b)zeypij(amb) $ﬂ<0 (4.35)

and this inequality may be reduced to

2

a.
(2B < exp(-b3) . (4.36)

The left hand side of the inequality (4.36) is always greater
than zero., Since b s Is positive and §> is monotonic increasing
the right hand side of (4,36) tends to zero exponentially in §> o
Thus no matter how small the constant on the left hand side of (4.36)
is, the right hand side of the inequality will eventually, with in-
creasing arc length, become small enough to violate the inequality

(4,36), This implies that at some point the stress-strain curve



described by (4,32) will become concave., Actually the stress-strain
curves for many materials, especially ductile metals, exhibit this
type of phenomena. Graphite on the other hand, being a brittie
material does not exhibit phenomena of this type. It is observed
that the stress=strain curve for graphite remains convex until frac-
ture. It is felt that the kefnel function (4,30) might provide a
suitable representation for rate independent ductile materials.,

At this point in our investigation let us return to the
kerne!l function (4.24) which we have chosen to represent the
mechanical response of graphite. For straining E;(S)=*4q n and

A
§$ will be zero. Thus we may write

3
T(N= C/exp (-bs) (+1) ds =

o

= £ [1-exp-0§Y] . (4.37)

For the straining process we have, E(§)=§ ., and the first deriva-

tive of the stress may be written as,

am AT
2E ~as = C exp (-b3). (4.38)

For graphite the first derivative (4.38) must always be greater than
zero for all § . Thus for §= O we have,

am

29 = Cc >0
a9 §=0 (4.39)
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and the constant C is in‘rerérefed as the tangent modulus of the
graphite specimen at S: (0] s, l.e,, at the origin of the stress—
strain curve,

From the condition that the second derivative of the stress

with respect to the strain,

d*m 2T
dE? =dd g?z%‘ - loc exp (-bQ) (4,40)

should always be negative we obtain the condition that b>0 .
The value of the constant b can now be chosen so that the best fit
to the monotonic increasing straining portion of the graphite stress-
strain curve is obtained.
. . A m
For the release of strain process, E-(S)="1,§= 2. 9
A m
and N=1 for this first strain reversal. Here §=‘f{‘ is the

‘arc length (strain) corresponding to the point strain reversal. Thus,

% §
()= | C expbs)ii)ds + / c exp{@mb(i-k)] é-bs} -1) ds
° * (4.41)

= DO exp{[arbd-kT5) [exp-bS)-exp 2]

Now, since for & felease of strain

AR _ _ 4T
JE- a5 = ¢ exP{[a+b(1~\<ﬂ%} exp (-b9)>0 (4,42)

the constant € must be greater than zero, and the condition that

the second derivative
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2 2
jETL = adl g = be expﬁ_'a-rb(l-k)] ‘%} expt-b)> O (4.43)

be greater than zero yields the condition that b must be greater
than zero., These are the same conditions which were obtained for
the straining process, There is, however, the additional condition
that the stress return to zero at the permanent set. That is, when
the strain is k(%) (or the arc length reaches m—k(%\') ) the

stress must be zero, Thus,

O= 1 (?m)"‘% ewp{[&ﬂ:ﬂ* lO] B;?} {exp [—b(m-— %"“)]— exp(z%m;}

or

ﬂ(%ﬁ% e*P(gim)[exP(“b;m)"fm (%mﬁ . (4,44)

For given values of ﬂ(m/z), ¢c,b, kK, and m, equation (4.44)
will determine the third material parameter, & . By using (4.37)
we can obtain the value of W(M/Z), substiftuting this value into

(4,44) yields the following relation for determining & ,

-b
2 1- exp ( 'im)
2my - —
exp(Z) = exp(EEM) - exp( %r-“) . (4,45)

For the process of re-straining E(sy=+1 g N=2 4 and

g retains the value of "2 » Hence,



(S = Tl ":{Y‘\)’:/ c evP{['a-u-zb(bk)]% -bé} +1) ds

=O+'9b‘{exp %(a-kbﬂ-exp [%“-e.%b- - Kbm -bé] . (4.46)

When the graphite specimen has been re-restrained to the point of the

previous maximum strain the corresponding arc length is
3
s=m (% -K) _ (4.47)
Thus

n .
T -km)= § eXP(é%n)[exp('kg")-exp(‘%“)] =n(z) (4-4%)

where this result follows from (4,44},
C, Comparison to Experiment

We begin by assigning values fto the constants found In
the kernel function (4.24), The constant C has been shown to be
the initial tangent modulus. For the sake of comparison let the
constant C = 428 |bs, Since graphite is a rate independent
material any one rate of straining is equivalent to any other rate
of straining. Therefore let v = | in some suitable unit, say |/sec.
Let b = 1/2 be the best fit to the monofoﬁic straining portion of
the graphite stress~strain curve, The permanent set is assumed to
be 0.! in our units of strain. Assume that our strain measure
multiplied by 3570 yields the strain in units of AL In./in. With
the above values for the constants we find that 4. is approximately

A
0.53. The constant & is equal fo I/2 for both the release of strain
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and re~straining processes and is zero for straining. The value of N
Is zero for straining, one for the release of strain, and two for
restraining. Thus we have, for straining, N
C =428 Ibs,, Mm=1, b=1/2, K=0.2, §=n =0,
For thé release of strain and re-straining the first four equalities
above are retained, but we have for the strain release process,
A

Nns=1, §=1/2,

and for the restraining process,

A
n=2, §=1/2 .

Now for straining we may write,

k(s = C- exp (-bs) (4.49)
or
(S = £[1- explb$] = 256[l-exp( %], (4,50)

For straining E= % , thus we may write down the values in

table 1.
. TABLE |

Srean ** 20 b E=9 |e” % i-e ) T (§) Vos.
000.0 0,0 1.000 0.0000 0,0000
357,0 0.1 0,951 0.0488 41,73
714,0 0.2 0,905 0,0952 81,45
1071,0 0.3 0,861 0.1393 119,24
1428,0 0.4 0,819 0,1813 155,15
1785,0 Q.5 0,779 0,221 189,35
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The release of strain process is associated with the follow=

ing kernel function,

Keey= 428 exp{[o.63 +%(0.8)]% - bs} (4.510)

and the stress for this strain release process is given by,

S
T($)= 189.35 + \3@\.04/;%9 (% 9)-1) ds (4.52)
e
T($)= 189.35 + 13b\.04 [eXp(-%é) -exp(-{‘/)] (4.53)
)= -370.87 + 1261.04 exp(-'\% ® . (4,54)

For the strain release process the arc length is equal to

neither the time variable or the strain, but is from (4.12),
%'—')imk - m (1= k) 7 | (4,55)

or

S= 041+ 087 . (4.56)

The strain is given by (4,18) and is,

E=1-5 . (4,57)

Thus we may now write the values of the stress corresponding to the

strain Inputs as shown in table 11,



TABLE |1
t -9
Swemnp' 2 v $ E e~ 2 |T(J lbs.
1,499.4 0.6 0,58 0,42 0,7483 141,24
(,213.8 0.7 0.66 0,34 0,7189 101,01
928,2 0.8 0,74 0.26 0.6907 62,70
642,6 0.9 0,82 0,18 0,6636 25,69
357,0 1,0 0.90 0.10 0.6376 9.4
For re-straining the kerne! function becordes,
— \
ke = 428 exp{[0.63 +(0.8)]*5-bs3 (4.58)
it then follows that the stress is given by
9
M = 928/ exp (0.665 -bs) ds (4.59)
c.9
A (H = 856 (fi.‘?"i’-!){exp(- O48)-exp (-Jiéﬂ (4.60)
_ - -k gyl
T($) = 356 [1.24 ~194 exp(-%5)], (4.61)
For re=straining, however, by (4,16)
S= n % - % mk (4.62)
or
8= T= 01 (4,63)
and by (4.19)
E= §-0-3 (4.64)
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Thus we have the values shown in table 111,

TABLE 111

f?ﬁ}?n > s | E |e % |ng s
714,0 bal 10 0.2 0.6065 55,36
107140 1.2 Lol 043 0.5769 103,32
1428,0 lo3 lo2 ya 0.5488 149,80
178540 1.4 103 0.5 0,5220 194,30

The stréss-straln curve plotted from these values is
shown, In Fig. 13, to closeiy reproduée an ac+u;lmgxperlmen+al
graphlite stress-strain curvémfor cyclic strainings Thus our model
',appears to be a sultable representation for the cyclic stralning

behavior of reactor grade polycrystalilne graphlte,
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V. THE THREE DIMENS IONAL THEORY

A. Invariants of the Transverse Isotropy Group

In this section the basic theory of the invariants of the
transverse Isotropy group Is given [37], [38], [:3@1, We start with
the definition of a tensor Invariant. Let A be an arbitrary tensor
with n components AQ, Am ves e s An « |f these components are
mapped onte the components I-\"‘1 R A* .o ..At by some |linear trans-
formation of space, then a function H(Ai,....,A‘,) of the tensor

components with the property that
H(A*;_,.,..,A*,,\ = Ad M (AL Ay (5.1)

Is called an Invariant of the fensor A . In (5.1) A Is called the
determinant of the transformation and 9 Is called the weight of
the determinant, When %.-.O the Invariant H |Is termed an absolute
Invarlant and when q;‘O the Invariant Is called a relative
Invariant.

Analogously, If {G} is an arbitrary group of |inear
transformations L. , In an n-dimenslional vector space V , then

H s an absolute Invariant of {G}, i for every |inear trans-

formation L iIn {Q},

HCLA LA = H (A% ae s A = H(Agaers An). (5.2)

The set of functions H;(A) which are Invariants of {G} for each i,
| form an Integrity basls for {G} .
If we are given an arblitrary function H' on V which Is

‘ [}
also Invarliant under {G} s then H may be expressed as some



function of the functions Hj;(A). Thus for a function of a single

variable,

H' (M= T (H (R), W (A),...) (5.3)

and for a function of many variables,

H'(A,8,C,...) = T(H (A,B,C,..0),.0) (5.4)

where J is a function of the indicated variables.

It is worthwhile to note that the integrity basis, as
defined above, is a function basis which is, in general, different
from the usual basis for a n-dimensional vector space.

We can now state the most important theorem in the theory
of invariants which Is due to D, Hilbert [40]. A quantic in any
number of variables has a finite system of independent invarian:rso

The transverse isofropy group is defined as that continuous
group of motions such that all directions in a material which are
perpendicular to the axial direction h are equivalent. |t is obvious
that the transverse isotropy group is a subgroup of the orthogonal
group. There are various types of transverse isotropy depending on
whether or not certain reflections are permitted as symmetry opera-
tions [41]. Graphite exhibits the type of transverse isotropy which
is characterized by the admission of reflections in the planes
perpendicular to the puaxis as symmetry operations. This implies
that vectors of the type (0, O, h) will be mapped onto vectors of
 the tyoe (0, 0, ~h) by the reflections.

We now state two basic theorems concerning the determin-

ation of the invariants of the transverse isotropy group. First, if
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the function H on V Is an invariant of {&} , then H may be
expressed as a function of a finite number of invariants of {:Gk} u
This is a consequence of Hilbert's theorem. Second, if {:C;} is the
full orthogonal group, then the compiete table of invariants can be

expressed in terms of
(w, V) and [u,v,...,w] (5.5)

where ,V,... W are vectors in V, (W,v) denotes the scalar
product of L, and Vv , and [}J.}VQ. °'1V”] denotes the determinant
of the vectors W,V,... W,
B. Material Symmetry

in order fo achieve a completely general description of
the mechanical properties of graphite, the constitutive equation for
graphite must be written in a form which will exhibit the symmetry
properties of the material, In our case the problem reduces to finding
the invariants of a system of second order tensors upder the transversely

isotropic group of fransformations.
n(s) = e (s'] (5.6)

is the general constitutive equation for graphite. In (5.6} [

and é are symmelric second order tensors. Now if a given material
obeying the constitutive relation (5.6) is observed to be transversely
isotropic, then the constitutive relation (5.6) must be form

invariant under the group of transformations which define the trans-

verse isotropy property. Iif the z-axis is specified as the symmetry



axis of the material, i.e. the h-axis, then the transverse isotropy

group is generated by the following symmetry fransformations [42],

Cos® Sind 0] -4

o O
-Sin¢ Cosd O| and (0 1 O (5.7)
0 0 4 0 o 1 a

along with the identity operation.

Employing an analysis similar to that used by Adkins [43],
[44] it can be shown that the Piola stress tensor 7T(§) can be
expressed in terms of a botynomia! in the strain rate, where 'IT(§)
is invariant under the transversely isotropic group of motions., We
can then form symmetric matrix poiynomials in the strain rate. We
require that these matrix polynomials be invariant under the
transverse Isotropy group, then by.infroducing appropriate kernel
functions the invariant matrix polynomials may be transformed into
our integral approximation [46].

Lianis and DeHoff [[45], [46] by applying the theories of
Adkins and Pipkin and Rivlin deduced that a symmetric matrix
polynomial In the strain rate which is invariant under the transverse
isotropy group colincides with the polynomial formed by the irre-

ducible group of prodqus of E(3) and 1 s Where

4 O O
1= 0] 0O O (5.8)
0] o O

L4
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We combine these prodﬁcfs with coefficlients made up of scalar invari=-
ants under the transverse isotropy group. These scalar invariants
are polynomials in the elements of an Integrity basis for the
Invariants of EE(EQ under the transversely Isotropic group of
transformations. The irreducible group of products for any finite
number of symmetric 3x3 matrices has been detived by Spencer and
Riviin [47]. The expression for the irreducible tﬁ+egrl+y basls of
scalars for invariants of any number of symmetric 3x3 matrices

under the transversely. isotropic group of transformations has been
derived by Adkins [44].

Fol lowing Spencer and Rivliin a symmetric matrix polynomial
in two matrices, A and B , can be expressed in terms of the
following,

L
, ‘A) ES;
A2, B® AB+ BA
A2B +BA%, AR2+ BRA, (5.9)
Aaﬁa + BzAz’

In the development of the one dimensional constitutive
equation there was no need to consider the transverse isotropy of
the graphlite specimen In *ha'+hoory. When considering generél three
dimensional straining processes, however, the symmetiry of the graphite
sample musT occupy an Iimportant place In the theory. The basic
results which are needed in order to incorporate the transverse
isotropy of graphite Into the |inear term of the infegrai approxi-

mation have already been lald down. |f one finds it desirable to



include some of the higher order terms of the integral approximation,
then the results of Spencer and Rivlin and Adkins for many 3x3
matrices may be applied. It should be noted that the number of
terms which arise in the integrals beyond the triple Integral term
becomes prohibitively large.

The terms in (5,9) may be applled to the |linear term in
the integral approximation In order to take the transverse isotropy

of the material Into account, To this end we set

A= F:"f(m and B=1 (5.10)

in (5,9) where 1 1is defined by (5.8)., Since only the |linear term

of (3.26) |s taken into conslderaflbn we wlll, for the sake of

consistency, retain only those terms In (5,9) which are |lnear In
E () . Thus with this statement of consistency and (5,10) the

table (5.9) reduces to,
1, Eco, 4, (B a1 + 1E®) (5.11)

where

1=4%<1%=..... (5.12)

We now apply Adkins' results on the irreducible group of
scalars for symmetric 3x3 matrices which are invariant under the
transversely isotropic group of transformations. In keeping with
the above statement of consistency, only those terms which are |inear
in éé(s) are retained. This ylields The irreducible group of scalars
for a symmetric 3x3 matrix which are invariant under the group of

transversely isotropic mqflons,
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TrE¢s) and Tr (LEC®). (5.13)
In index notation the linear term in (3,26) may be written

as
T
ﬂfj :/ km\(s)EM () ds. (5.14)
o

The restriction of the integral (5.14) to the description of a
transversely isotropic material is now accomplished by combining

the terms (5.11) with the coefficients (5,13). Thus the description
of the response of any transversely isotropic rate independent

material is accomplished by means of the following relation,

5 » » = . °
f {kl(S) EmkoEEUAEQK OFFEE) I+ kya[E] 1 +
° (5.15)
+ Koo TW[1E (s)][ + K, ) T[4 E csy) 1} ds .

In (5.,15) the Fﬁ(g) are functions of their indicated arguments and
the stress and strain rate are second order tensors [46],

The parameter S in (5,14) and (5.15) represents a general=-
Ization of the arc length used in the one dimensional representation

and it is defined by,
A : Yo
= - NE.. 4
S(?)[[EU(’?:)EU(Z‘Q dt! . (5.16)

It can be seen from (5,16) that the arc length parameter § must be
interpreted in terms of the general three dimensionai state of

strain. Thus the kernel functions l(:(s) in (5.15) are also



functions of the three dimensional state of strain. More specifi-
cally the kernel functions F(;CS) are functions of the arc length
parameter which is an invariant of the strain rate tensor.
C. The Six Dimensional Strain Space

Let us look at some of the properties of the arc length
parameter., Consider first the manifold formed by the three dimension-
al symmetric second order tensors EE « This manifold forms a six
dimensional |inear mefric space. The mefric is defined by means of

(2)

the scalar product of any two elements E. and E and this scalar

product Is defined by the equation,

D (2) ¢H

(BB )= Ej E;j . (5.17)

The norm in this space is formed from the scalar product, viz.,

"E” = (E".j E;j)]’,‘ (5.18)

and the distance between any two points in the space is given by,

(1‘) (2) (2)
E )= ’\/(EmE )(Em—E(z)). (5.19)

Now let a tensor in this six diménsional space be given
as a function of some scalar parameter 7’ . The derivative with

respect to 2°

aE..
—_ (5.20)

a7

will not, in general, be a normalized tensor. |f, however, this
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parameter is changed fto the new scalar argument, as given by

(5.16) then the tensor

dE . &S
dsJ = Eij = Ezj (5.21)

will be a normalized tensor [48].
Novozhilov has shown that for an arbitrary tensor curve

in our six dimenslional space, the following retations hold,

(1) (2) (2) %) (3)
dE de = _ E
Al e e TR e

() , ) 3 (5)
(2 (4 dE )
dfs =-q.F )*ctae . "&?—""%E * ‘14E ’ (5.22)
(5 ) dE“) (%)
T =" BV +qsF " 4 Tas =7 s :

.

By means of the relations (5.22) it can be seen that the E Y are
normal ized and mutually orthogonal,

The applicability of the equations (5.,22) can best be
seen by means of a two dimensional analog. On a euclidean plane
a smooth curve is specified by expressing its position vector
:)C:(xi,xz) as a function if its arc length S . The unit téngent
vector €,(8) and the unit normal vector €,(S) can be def fned if
jC(s) is ﬂvice continuously differentiable and if the vector j:(s)
is nowhere zero, Then the vectors . X ( S), el( S), and ez(s) are

related by the Frenet formulas,



dX ae de, _
gs =10 as T A% =%

(5.23)

The function CLOS) Is called the curvature.

Thus for an arbitrary symmetric tensor the relations
(5,22) can be thought of as a generalization of the Frenet formulas.
By means of these formulas we can determine, for an arbitrary tensor
history B (s), a set of six orthonormal tensors at each point of
the history,
D. The Straining Program

We wish to obtain results which ﬁill be applicable to
actual stress~strain curves., To accomplish this a specific strain-
ing program must be specified. To this end we assume that the
material is strained from its undeformed state and that there is a
single strain input to each of the three principal material direc—
tions, The assumed stralning program valid in the time interval

O<2>&Y s,

E,(Ty=m"T

Ep(?)=-m, 7

Eax(2)==ma? (5.24)
Ep(®)= EL(T)=E (=0

In (5,24) we assume that Mys Mgy » 3nd My all have the
same sign. With this assumption (5.24) represents a material with
one axis in compression and the other two axes in tension, or one
axis in tension and the other two axes in compression. We will

only consider the case where the material is strained when it is

6l



aligned either parallel or perpendicular to its h~axis. This is
done so that our theory may be compared to the existing experimental
data,

Apparently there is no avallable published experimental
data which will enable us fo determine the off diagonal terms of
the straln matrix. Thus we are forced to consider only those terms
on the ma%n diagonal of the strain matrix. These terms which we call
Tbe input to the material are functionally dependent upon the terms
on the main diagonal of the stress matrix, or the output., It is
evident That for this sifuéfion a vector theory could have been
vdeveioped where the output vector is given as some functional of the
%Inpu? vector. A vector theory would have been easier to develop,
but it would have lacked the generality of the present theory. Our
fheory Is capable of describing the shear behavior of graphite and
as soén'as date of this type is available It can easily be incorpor-
ated into our formulation of the three dimensional response of
graphite,

By the transverse isotropy property of graphite it is
obvious that if the material is strained and it is observed that
fm, =m, » then it can be concluded that the material Is being
strained parallel to the h-axis.

The arc lengtﬁ parameter S may be determined by applying
equation (5,16) to the straining program specified by (5.24), The

strain tensor determined by the straining program (5,24) is,



’mi’l‘ o o
LC) o N .

The corresponding strain rate tensor is

™, ®] o
E.(h= |O -y, O
o o "WB

[ ]

The integrahd squared of (5,16) may now be written and it is,

E 3:) (7:') é" ('Z") = YY'\12 + mza + maz °

Carrying out the operation indicated by (5,16) yields,
S(T)= MV
where

- 2 2 2 )
M=M= ¢ wm, +m3) .

The relation (5.28) allows us to write the strain and

(5,25)

(5,26)

(5.27)

(5.28)

(5.29)

strain rate tensors, (5.25) and (5.26), in terms of the arc length

parameter,

™% o 0

E@= [0 ™ O ]
-m

c © 1)

b, ) wnd

(5.30)
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™ o e,
Em= |0 ™M o

- (5.3
° o %
The trace of the strain rate tensor (5.31) is,
= i (m,-m
Tr Ecsy= "4 (IMgm=m,-my) (5.32)

The release of strain process corresponding to the strain-
ing process (5,25) is
ki
Ey®= »[1-% + (k-]
Epa ()= g %" -1 +1-k 7]
En (D= my[%a-1401-k) %]
By (P)= Eu(2) = E3(2)=0

(5.33)

where O<= ki, km ksé i . The restrictions which have been
placed on My M, , and "Ma for the straining process
are refained for the release of strain process. The equations (5.33)
are vaHd in The T{ime interval 1247 &£ 1 , and correspond fo
a simultaneous reversal of all three inputs at the instant in time

T = 1/2 - Once agaln only terms on the main diagonal of the
strain matrix are taken into consideration because of the previously
glven reasons,

At the point of strain reversal we have, as a consequence

of either (5,24) or (5,33),
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Eln (/'\/2) = mi/z
E,, (Y2)=""%2 (5.34)
Ey, (12)=-"v2

For each of the three inputs there are three relative maximum strains
(5,34) to which correspond three permanent sets. In the notation

used to descriée the permanent set in the scalar case (4.5) we have

for '5'--9 1 .

X -
B, = 172w, k, | (5.35)

*

The strain rate matrix corresponding to the strain matrix °

defined by (5,33) is

mi(kl—i) @) @)
';_73 (?) = o my(1-k,) O (5.36)

apd

é'u’ (P, (h=rm ke e mAAkYHM2A-KY (5,
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Let
2 2 2 2 Yo
N:[miz(ki-1)+ m, (1-k,) 4 mg(1-ky) ] (5,38)
+hen
v
ey d
5(7)= %C"f)l%,i/ﬁ'i'l/;lv dv’ .  (5,39)

IT can be seen from (5,28) that the first term on the right hand

side of (5,39) is equal to A@<2 and consequently (5.,39) becomes

s¢y= Y (M-NY=NT (5.40)

which is valid in the inferval /2 & 2" & ﬂ. o Equation (5,40)

may be written as

M
Y e (1) (5.41)

' 1
where (5.41) is valid in the arc length interval 22 &5 % Y2 (M+N),

When (5.41) is substituted into (5.33) the strain matrix is obtained
as a function of the arc length parameter. By differentiating this

strain matrix the following strain rate matrix is obtained,

«w% (k@_w 1 o) 0
E(o = ¢ T (k) o (5.42)

o) o "Y1k .
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The trace of the above strain rate matrix Is,

Tr E(or= I%T'[VY\L(‘Q"Y)*mg (1-kp) +m, (1-kg) ] . (5.43)

Let us now look at the re-straining program for the three

dimensional case,

Epa(T)=10p (1-% - K2/2)
Eag(2)=ma (-7~ K3/2) (5.44)

E ()= E ()= Ep(M=0

where the previously placéd restrictions on My, My, My, kl’ ka,
and kb are retalned. The strain rate matrix corresponding to the

strain matrix defined by (5.44) is,

E‘.j (o= |0 =My 0 (5.45)
O O "m3

Thus in the previously defined notation
3 ° .2 )
By () Eqyyh=M (5.46)

By means of (5.40) evaluated at 2~ = 1 and the relation (5.46),

the arc length parameter can be determined in the time interval

2=1 >

67



68

v
sW):%(M*rm +/Mow'
i

=% (N-M) +M 7y . (5.47)

Equation (5.,48) may be written as
4
¥ = T [s +% (M-8 (5.48)

and by using this the strain rate matrix may be written in terms of

the arc length parameter,

Mi/M o o
Ei_‘, (=] O M0 (5.49)
0] 0 ym | .

The trace of this matrix is,
s i .
TE@w=3 (Mmg-my-m) (5.50)

The relations (5.49) and (5.,50) are valid in the interval 't?i or

S?% (M+N),

E. Discussion of the Kernel Functions

*
At this point only the six constants Y0y, m,, w,, By

*
E: ’ E3 g must be specified in order to apply our stress-strain
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relations for straining, release of strain, and re-straining. These
constants arise from the specification of the inputs to the material.
Other constants will appear in our final formulation and they will

be associated with the kernel functions (<; (3) . We now provide
further reasons for choosing the arc length parameter as our measure
of the deformation and also explain how the kernel functions are to
be chosen.

We have previously endeavored to show, by comparison with
the classical theory of plasticity, that the arc length parameter
is a sultable measure of the amount of deformation which has taken
place within the material., Bridgeman has shown experimentally that
hydrostatic pressures do not cause any appreciabie plas+fc defor=-
mation in metals and the plésfic deformations have been shown to
take place along shear planes, Thus in most theories of plastic
deformation only the deviatoric stresses are of any import.

Theories of plastic deformation exist which take normal
stresses into account. Some theories of granular work hardening
mafé}ia!s are of this ftype. In fact, in the theory of the plastic
cavitation of granular materials it has been shown that the residual
increase in volume is not proportional to the work done in the
deformation, but to the arc length of the plastic deformation path
[49]; Here the parameter which seems to provide a natural descrip-
tion of the cyclic loading behavior‘of granular materials Is the arc
length parameter.

Graphite may be classified as a granular material, 'Any
polycrystal line material which is both microscopically and super—=

microscopically heterogeneous and anisotropic (on account of the
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granular structure and the individual defects in the structure of
each grain), forms a sféticaliy indeterminate system from the view=-
point of structural mechanics. As the loading progresses the ele-
ments in this system gradually begin to deform plastically. This
is observed macroscopically as the monotonic inéfease in the
coefficient of friction. While fhese“p]aSTFC deformations progress
elastic Interactions are set up between the elemen+s of the system
and this is Interpreted as the hardéning of the material. Thus we
see that since graphite exhibits the above proper?iég it may be
classified as a granular material,

in some of the theories of granular mafeff;ls the arc
length parameter is found to be a suitable parameter for describing
the mechanical response of the materials considered. It has already
been noted that the residual increase In volume, in a granular
material, due to cyclic loading has been proven to be proportional
‘to the arc length of the plastic deformation path. Thus the arc
length should also be a suitable parameter for describing Thé
mechanical behavior of polycrystalline graphite,

This discussion of .the theory of the plastic cavitation
of a granular material and the previous discussions of work harden-
ing plasticity tend to indicate that the arc length shouid be the
natural parameter to use in describing the mecha?ica! behavior of
graphite. There are many other examples pertinent to the use of an
arc length, or work hardening parameter in classical plasticity
and related topics, which have appeared since Odqvist's work [50]

which interpreted the plastic yield condition in terms of stream-

lines,



As in some of the theories of granular materials the
mechanical response of graphite does not seem to lend itself to
description by the deviatoric stress or strains. We have assumed
that the normal stresses also contribute to the plastic deformation
in graphite. While it is true that a single crystal of graphite
will not be influenced, to a great extent, by hydrostatic stresses,
the macroscopic problem of a, to a lafge degree, randomly oriented
polycrystal line structure will be dependent upon the magnitude of
these hydrostatic stresses.

Hence from both our geometric and physical arguments It
appears that the arc length parameter is indeed a reasonable
measure of the deformation of polycrystalline grap}\ife°

The kernel functions k;(én have been specified as
functions of the arc length parameter which Is dependent upon the
entire three dimensional state of strain. From our experience
with the one dimensional representation of graphite it Is reasonable
fo assume that the K;(s) are of exponential form,

In fact, with the choice of the arc length as the Intrinsic
time associated with graphite the exponential form of the kernel
function is necessary in order that the three dimensional theory
reduce to the previously derived one dimensional model., That is,
when there is only one strain input the three dimensional theory
should yield the previously derived one dimensional model.

To this end we assume that the kernel functions are of the

following form, for monotonic or cyclic straining
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X .
k;(S) =C: -exP{@.&bn(%—'}_ﬂé—bi‘)}
(1 =4, 2y0e76) . 20

The relation (5.15) has the same basic form as’(4°24), but (5,15) is
of a different character. 1in (5.15) the parameter S Is no longer
dependent upon a scalar strain, but upon the ;nfire three dimensional
state of strain, While we have continued to use the letter S to de-
note both of these parameters, in the one case S is a path length in
a one dimensional space, and in the other S is a path length in a
six dimensional space,

The value of the arc length corresponding to the reversal of
strain is again denoted by $ » and‘*&*is the arc length corresponding
to the unloaded condition. The value of 3* corresponding to the per-

manent set defined by (5.35) is
S*=Y% (M+N) . (5.52)

For this case of three dimensional strain the magnitude of the strain
Is given by the scalar formed from the square root of the scalar

product,

HE!?: VE. E.

iy =) (5.53)

This is also the norm of the six dimensional space formed by the
components of the strain tensor, The straining process we are con-
sidering is weli defined insofar as all three strain inputs are re-

versed at the same time, and it is because of this that there is no



problem in specifying complete strain reversals. Hence we may specify
N as the number of complete strain reversals. &.,b,and the ¢
denote constants which are to be determined. In this manner the
three dimensional formalism we have developed will reduce to the
previously derived one di@ensionat case, |
F. Application of the Kernel Functions

The kernel functions (5.51) are now substituted into the
constitutive equation (5.15) while making use of the relations
(5.30), (5.31), and (5,32), Thus the relation for straining in

the interval Oé’Z’é;{, Oésé%, may be written as

0 mq o} o]
ﬂ(§)* Ci O m2 o | t(2C,4C) |0 o ©
- 0 ©

m, 10
™ MM ] m-mym, O O
te| © mimpmy O +Cy Q o o
o 0 mrmem, o o o (5.54)
m © o
sl 0 my o exP{[a%-rbN@] g“,—bs ds .

0 O m
Thus we may write,

ﬂ‘n(é) M\o{[cl-t 2C,+Cs C(,] m1+[c3*C:.ﬂ(mL mo" m)}[j —\o§]
(5.55)
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1 - -b$
ﬂ22(§)=2V\'B{c3(m1-m;m3)+csmx Cimz} Li-e ] ) (5.56)
A _b$
T ()= Mb Cs(mfmi’ma)i-csmi'%ma} [1‘6 ]7 (5.57)

A
because é =0,

For the straining process in the |l-direction we have,
Ma
Eye= 8 S (5.58)

and the first derivative of the stress in the |l-direction is,

4 -b$
"'a-g';‘i N {[al+2c2+cs-»chﬁ_*{CS*cg](mi'm;msﬂ e , (559

For graphite the first derivative (5,59) must always be greater than
zero (assuming that m1>0 ) for all % o In particular when

§ =0 we have,

d T 1
a_é; IE o :r?‘:{[-C1+ZC?+ Cf* Cb:,mi'i‘ [ca'fc‘;](mi-mz-ms) >0 . (5.60)
i

The constant on the left hand side of the inequality (5.60) may be
tnterpreted as the tangent modulus of the graphite specimen for the
stress-strain curve in the ll-direction,

From the condition that the second derivative of the
stress

d*TT  _bM -bs
dEﬁ = mi [C1+2c2“~° Cst C(,]m.l* [63"' C"’](m‘fmﬂ- m3§} € ? (5,61)
2l




always be less than zero we obtain the condition that

b>0

The relation between the applied strains and the stresses for the
release of strain process, in the interval i{é'&'f‘—i or equivalently

1
%f SE%(M+N). , is by (5.15), (5.42), (5.43), and (5.51),

. 9 m(k;l O 0
’1\7(§)=ﬂ(§3l Mt TTZ: C,| O m(k) © +
¥z o

O m3(1‘k3)
mks) 0 O 100
wzepe)| 0 0 0 "’Cs(‘;"‘«,(kij)‘Lmz('l'kz)*mid"kfs)_l 0 1 O|+(5.62)
o o O 001
myCky-Demg(tke e (Ak) © O 1 00
aM bN
o) 0 O] 001

where we have set N=1 and M/2 « Thus we may write

i
Tl =T 57! LY +BN [Cfr 2C,+C 5% €y Jny (K-1)+ [+ €], Chy-D)

pon, (K my(1-k ) exp { %.%’H Eéi j [exp( o) exp(-b§Y]  (5.63)

T 22(5)3 ﬂz,z (3)

1
X Hpiriems (1K )+ Cafmy ke Dma Crkpm S Tk 1+
"z

Camq Chy- 1} EXP{ 225 B} [enpe M- exp - 09)] (5.64)
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Tz (§)= 3=,(Qn’ Mﬂ'cims('l'kﬂ+C3fmq(;<&-'1)+mz(1akz)+
7

-
-

’\J\-‘ I
mg(‘i-\{%\« + Loy \135} @;%Pi 32 + ;) if‘ (5.65)

[exe - 8- evp C o],

As in the one dimensional case let us require that, in
the |l=direction, the stress return to zero after the completion of

the release of strain process. Hence,

R O AN N fr= |
Ty = Ml 260 70l ng e o e ](mem, ~-m)¢[1- exp(“}ﬁ')i

‘*bN{[C# 20, +¢etCy]my( k1w1)+[03-rcﬂ[m1( b 1) v, 4ok ) (‘lk)]} (5.66)

axP{éﬂl+-—~ ?{e_xp(-bm) exp[— (m+N)} = O

By rearranging terms we obtain,

rclf 2C,+C TQQ{’MQ}(\ (1 EXP(—b ) -%4-!31\){[(,01( \(i 'l)_J
(*’xpé 2 f{&xﬂ ;i’ )-exPE‘ 5 (M+N }} =

A N (5.67)
"E 5 r “.‘)\S fmﬁﬂfmg“mﬂ[‘i' €x O{m 2 1}"‘55\)‘{\"\’5/1( kf‘ﬁ)*mz(i" k2)+
*ms(i‘kaﬂe“P{%%&% \9-;;:?1 }%ﬁiwf '%%)“@'XPE% (MARN )E =C
or ] |

- . )

E‘1+zcz+c5+élp-} !-{ \_*(Q(’“?»M)]@:ﬁ» }-4. g&ﬁhl(kl ’l] EXp{L@ + ’Zﬂj
[4- expl” )] +[egred) bm(m my i exel” 5 ).J"be[‘mx(Kx“*‘ (5.68)
+, (1l ) Mg (1- k%ﬂ eXF%”Z:’“.V}-+ b_f_\l } [ﬁ_« exp (»%:I_\Tﬂ =0
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The above equation will be given values of M, N, \(-‘ 3
m-» o, and Q: determine the material parameter 4. .
i

Let us now look af the re-sfrainfng process,

Yﬂl ml ¢ O
T(N=T(F { —mz ol+2¢, |0 o o|+
%“/(M“’ﬂ) =My 0 o O

1 ©c0O myMzM; o O m C O
+C3(mfm{m_3) 0 10 +Cq o 0 o+c3 6w O+ (5.69)
O 0O 1 o o O C O mi

My

0o |
+C,lo o o § exp %l: %+bN]-bs ds.
Cc Q

)
@)

The first term on the right side of (5.69) is zero, because we have
assumed that the strain release process returns the graphite specimen

to a state of zero stress. Thus we may write,

Mg € 3”1:%‘\0{[‘ r20,3 G Jony (€ rey J(my-m,- m@} '

EXPp L a bN] {6%9 [-—Zb* (M+N)]-exp(- b&} 5‘5"70’

T, ¢ §) = :'L =Cqmy+ Ca(mi’mz'ma) +CsMy §e
22 My

cexp [ 22+ bN] (exp[--—(m+m] eKP(-bﬁﬁ (5.7
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(LI §\=£%b {-C»LmBA- °5(m1‘mz‘ms)+cfm1} .
(5.72)

FEeXp E 2 b N] {exp[ (M+Nﬂ G*P('b&}

The general triaxial equations for straining, strain
release and restraining are now complete. |n each case the three
dimensional equations will reduce to the previously derived one
dimensional equations when only one input is considered,

Fo Concerning the Applicability of the Results

In order to better sée the applicability of the results
let us look at the experiments we have been using as a check of our
theory, In these experiments a stress input was applied to a
graphite sample in one direction only and the strains, being the
outputs, were observed along the principle axes of the material.
Thus a stress was applied to only one principal direction, the other
two directions having no stresses applled to them. We then reason
that if, in our theory, the observed strains are used as the inputs
to the material, then the theory should predict the correct experi-
mental stresses which were applied to the material. This requires
that we should predict a stress in the |l-direction, but no stresses
in the 22~ and 33-directions.

Thus we see that In order to apply the existing date we
will have to assume the Type of data reversibility explained above.
Specifically, we must assume that the stress input-strain oufpuf

data can be used in our strain input-stress output formalism. We do



not know of any experimental evidence which would tend to substantiate
Tbls type of reversibility of data, but we know of no experimental
evidence which would tend to contradict this type of behavior In
graphite. For the moment, however, let us assume that this is a

valid type of behavior for graphite.

The question arises: why not invert the constitutive
equation and obtain a relation with a stress input and strain output?
In this manner we would be able to handle stress inputs and apply
the experimental data directly. There are, however, difficulties
In using this method., The difficulties lie not in the mechanics
of the inversion process, but in the physical significance of the
arc length of the stress path in stress space. An additional
difficulty arises in finding suitable kernel functions to be used
in this representation. In the stress input formalism the kernels
do not necessarily have to be related Tb the kernels in our theory.
Even more, they do not necessarily have to be of exponential form.
Also, if we perform this inversion all of our arguments based upon
the concept of work hardening plasticity will no longer have any
épplicabilify, and these arguments could not be carried over to apply
to the arc length in stress space, since one does not usually speak
of a stress hardening parameter. The arc length as a function of the
stresses does not have the same physical significance as the arc
length in straln space. To provide the justification for the use
of the arc length in stress space as the measure of the deformation
would require a great deal of effort,

At this point let us look at the consequences of the

assumption of reversibility of the data. First this requires that
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the stresses in the 22~ and 33~-directions be zero for the straining,
release of strain, and re-straining processes. This can be accomplish-
ed elther by requiring that Cﬁ , C3 , and Cs vanish, or by finding
suitable combinations of the ms o, \<;, and Ci’ C3 s and CS"

Thus we have a reasonable representation for the behavior
of graphite for the experimental case discussed. One must not forget,
however, that we have assumed that we can take stress input-strain
output data and use it as if it were strain Input-stress output data,
Errors will probably arise because of this. This Is not the only
source of error in our development,

Any discrepancy between theory and experiment may be due
to our use of the linear term in the integral approximation. In
applying the integral approximation (3.26) to the basic constitutive
equation, the first term of the approximation was taken to represent
the mechanical response of graphite, while the remaining ferms were
neglected, 1T might very well be that this single term of the approxi=-
mation is not sufficient to describe the mechanical response of
reactor grade graphite. Engineers have found that the |inear term of
the integral approximation is not always sufficient to describe the
mechanical behavior of some materials. For Example, Wang and Onat
[51] have shown that even the first few terms of fhé integral
approximation do not yield results which can predict, with reason-
able accuracy, the mechanical behavior of 1100 aluminum at 300° F,

This situation may also exist for the general three
dimensional response of séme types of reactor grade graphite. I|f

so, then perhaps there is an argument, strong enough to outweigh
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arguments of complexity and unwieldiness, to include higher order
terms of the approximation in order to obtain a better representation
of the mechanical properties of graphite. However, as Pipkin has
pointed out [52] there is no guarantee that the addition of more
terms of the approximation will produce a better approximation. In
fact, the addition of Just a few higher order terms may yleld an
approximation which Is less accurate than that obtained with the
linear term alone., Thus if higher order terms are needed we cannot
say how many more terms will suffice in order to get the job done.
Also, there is no theory of convergence which we can apply to our
integral series.
H, Comparison to the Experimental Data

Consider a specimen of graphite exhibiting one weak axis
and two strong axes. The weak axis is in the ll~direction. Thus
all data taken when the material was loaded parallel to the ||~
direction will show that the data for the 22~ and 33-directions are
the same., I|f the specimen of graphite is loaded parallel to the
Z22~direction then we will obtain three different strain outputs. By
reversing this data we find that we should have three inputs to the
material and two zero outputs. The following data is the result of
loading a graphite specimen parallel to its 22-axis. The relative

maximums are determined by,

3
feey
{

4,200
m, = 25, 500 (5.73)

m3 = 3/ 500
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and the permanent set by

k, = 0.143
k, = 0.139 (5.74)
Ky = 0.149¢

using these values we find that

M = 2¢,0%0 (5.75)
N = 22, §73 (5.76)
a *
-9 = 11,236 | (5.77)
The process defined by the above constants will be referred to as
case |,
When the material was strained parallel to the |l=direction,
the following constants were obtained,
m, = 49,600
m, = 5100 (5.78)
my = 5,100
and
k, = ©.11% (5.79)
We find that,
M= 0,120 (5.80)

N o= 43 017 (5.81)
9-9= 21,808

(5.82)



The constants (5.78)=(5,82) will serve fo define the process we will
refer fo as case |l. Straining parallel to the 33-direction is equi-
valent to straining parallel to the 22-direction and thus there is
no need to consider this process separately.

For case | we have the following basic equations for

straining,

4 ,
My ()= Mb{:[‘:fZCgCS&Cb__\mf[cS-& eyl ™ ml-\-ma)} ‘

{1- exp(-bfﬂ] (5.83)
where |
= - 7z
ETil hni (5,84)
§ N M?‘ (5,85)
21
Tl‘n(‘S)'»'Mb{cimz-fcs(- N+ ey - cs.mi'}.
[L-expl-b§) : (5.86)
where
E22 = M, (3 | (5.87)
i
’”;3 (5) ’Mb{:' Qim3+C3_(-Yﬂ1+ m2+m3)_ Csmg}'
o[1-exp -b$)] (5.88)
where
Eggz -, 7 (5.89)

Equations (5.83)=(5,89) are valid for



For the release of strain in case |, the basic equations

are,
Ty (§)= Ty (130400 + i 116 14 Ry +€4€ ] my (- ) 4
+[esreq10m, (A kg em Cky-D+myc -y 1} ¢ (5.90)
exp [ 348, N [exp (" -exp bS]
where
Ey= m«.[%"’i +(1- k2] (5.91)
=4(M-N)+ NP (5.92)
Tyy(§)= Npa(13,040)+ Hub1Cym, (hp= 1)+
+ 03 [my(1-k) 4+ m, (k1) + my (- k?)—J"' Cs mi(i-\q)—} - (5.93)
cexp [ a?{\/l N [e_xp('—b-z-b-/-l)- exp(-b%Y]
where
Epa=my[4- ‘%Hi’kzn‘] (5.94)
Mia(8)= T3 (13,040)+ 7 foym, (1-K,) +
w5 [mg(d-kpyima (-1) 4m 5 (4-kyl] +€5 g (1 )} (5,95)
exp [ 41, ] LexpC G- exp(-b 5]
where

E33=m3[‘<}2’—1+(1~|<3)’2“] . (5.96)

Equations (5,90)-(5.96) are valid for '/ s?jéi’ %Qé S¢ %_(M.+N)

o
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For restraining in case |, the basic equations are,

A,
Tt Mb{- eyt 20, repre Imprlestcl Cmprmys ms)}‘

(5.97)
-exp [ a—;iM +b N {exp['%(M*Nﬂ— @(p@-b%\}
where
Eyq= my (1-7- \%) (5.98)
§=5 (N-MY+M T (5.99)
1
exp [ &4 4oN] {@XP['% CM+NT]-exp -b$)] (5.100)
where
Eea=m (214 %) (5.101)
1 ¢
1\‘33( = M‘b'):cim gt Cqlmyt Myt M 3)- Cs mi}-
exp [ 3_7_,,2%—+ b ] {expf‘-%(MJrN)]—exP(-bSﬁ' (5.102)
where
Egp = my(1-%- \<3/27.) . (5.103)

Equations (5.97)~(5,103) are valid for
r=24,  §=% (M.

The basic equations for case || have already been stated and
they are (5,24), (5,28), (5.33), (5.,40), (5.44), (5.55), (5,56),
(5,57), (5.63), (5.64), (5.65), (5.70), (5.71), and (7.73), In all

these equations we must set My= My .



In case | the stresses in the 33~ and |l-directions
should be zero for straining, the release of strain, and re-straining.

Thus (5,83) reduces to

-4200Cy + 17,800C,=0 (5.104)

and (5,90} reduces to

3599C - 15492C, = O (5,109
where

C1=ci+2cz+c5+cb (5.106)

C2= CB + CL/ [ (50‘07)

Equations (5,104) and (5.,105) are essentially the same relation to
wifhiﬁ experimental error. Constants which satisfy (5,104) will
very nearly satisfy (5.,105), These conditions obtained from the
re=straining equations are the same as those obtained from the
straining equations,

From equation (5,88) we obtain the condition
-3,500C,+ 17,800 Cg = 4 200¢; = O (5.108)
and from equation (5,95) we obtain
20920, - I15,492C3+3,697C5 = O (5,109)

We also consider (5.,108) and (5.109) as essentially the same relation

to within experimental error,
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Similarly in case Il from Equation (5.57) we obtain the

independent equation

=5,100C, +39,400C3 +49,600Cs =0 (5.110)
We set

b= 0.0001§ (5.111)

~as the best fit to the monotonic straining portion of the stress-
strain curve of case |, When §-:'M/;z we see that Tl‘u(cg): 3600 lbs,

in case | and T, [8)= 3L00ks, in case 11, Thus we obtain the
11

additional conditions
2s5,500¢, +17, 800Cy -4, 200Cs = 163, 64 (5.112)

and

43600 (y + 39,400 Cy = 13,859 (5.113)

Equation (5.112) comes from (5,86) and equation (5.113) comes from
(5055)9
Solving equations (5.108), (5.,109), and (5.112) simultan-

eously ylelds

¢,= © 564 (5.114)
C,= 0. 1o% (5.115)

Ce= —0.0259 (5.116)
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Equations (5,113) and (5.104) vield

Ci= 0OHM0 (5.117)
C,= 0.111, (5.118)

We can now solve for Cy which is found to be

Cy= O.00b (5.9
Substituting the appropriate values into (5.86) yields
(= 4,194 1- exp(0.00015 )] (5.120)

from which we obtain the values in table 1V, which describe the

straining process.

TABLE 1V
0 $ T \os. |E # Vin
0.0 0.000 0.000 0.000
0.1 2,608 1,358 2,550
0.2 5,216 2,216 5,100
0.3 7,824 2,897 7,650
0.4 10,432 3,317 10,200
0,5 i3,04o 3,600 12,750

The constant &. is found by requiring that the stress
return to zero when the strain is released to the value of the

permanent set. In this manner we find that
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a= 0.00002462 (5,121)

The equation for the release of strain (5.93) becomes
Mo ()=-%48 +31,458 exp(-0.000159) (5.122)

from which we obtain the values in table V.

TABLE V
z S [nibs. [ in
0.6 15,298 2.323 10,542
0.7 17,555 .42 8,334
0.8 19,812 763 6,126
0,9 22,070 300 3,917
1.0 24,327 ~29 1,709

For res?raining we substitute the appropriate values Into

(5,100) and obtain
‘/, ‘/20" 170,000 exp (-b&.) (5,123)

for which we obtain the values shown in table Vi.
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" TABLE VI
' in
03 S | lbs. |E X %0
lol 26,934 | 1,428 4,258
1.2 29,542 2,397 6,808
1.3 32,150 3,052 9,358
1.4 34,758 3,495 11,908
1.5 37,366 3,794 14,458
The values of the stress in the |l- and 33— dikecfions are less than
' in
0,50 Ibs. when the strain is 13040%7, .,

let us now cbnsider case |l, From the equation for straining

(5,55) we obtain (5.124) which upon the substitution of the appro-

priate values for the constants yields

My ()= 3633 [1—e><p(—o.00015§)] .

Table Vi1 shows the values obtained from (5.124).

TABLE VI
7z S n§ les. g %,
0.0 0,000 0.000 0.000
0.1 5,012 1,946 4,960
0.2 10,024 2,864 9,920
0.3 15,036 3,296 14,880
0.4 20,048 3,500 19,840
0.5 25,060 3,597 24,800
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Equation (5.63) yields the following relation for the release of

strain when the appropriate values are substituted,

M1 ($)=-128.0+ 160,000 expt0.000159).

in (5,125) we have used the following value for

0.0000198

a,

(5.125)

(5.126)

which was obtained by requiring that the stress return to zero when

the strain attains the value of the permanent set.

obtained from equation (5.125),

TABLE VI 11

7 S ™ vos. [E %
0.6 29,422 1,804 20,386
0,7 33,784 880 16,071
0.8 38, 146 396 11,755
0,9 42,102 161 7,440
1.0 46,419 23, 3,125

Table VIiil is

For the re-straining process, equation (5.70) with the

appropriate constants yields the following relation,

Ty (D =3,690-4,169500 exp(-0.00015 ),

From this equation Table IX is obtained.

(5.127)
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TABLE IX
7 S M ibs. |V Vin
Fol 51,880 1,950 8,184
1.2 56,892 2,870 13,144
1.3 61,904 3,303 18,104
lo4 66,916 3,507 23,064
1.5 71,928 3,604 28,024

The curve obtained from tables IV, V, and VI is illus~
frated in Fig. 14, and the curve obtained from tables vil, Viit,
and X is Illustrated in Fig. 15,

Thus we see that the theoretical and the experimental curves
are in agreement in case | even though a combination of the date for
the 22- and 33~ directions were used in the theory, More specifically,
the data for the 22- and 33~ directions should have been identical as
a consequence of the transverse isotropy property, but this was not
the actual case as can be seen by comparing the experimental curves in
Fig. l4a and Fig, l4b,

In case || the fit is not very good, however, the strains
are extremely large and this hay account for the discrepancy between
theory and experiment. When épplying the integral approximations
To such large strains it has offten been found that the linear term of
the approximation is not sufficient to closely describe the mechanical
behavior of the considered material when the strains are very large,
With this in mind our theoretical curve seems more reasonable. |t

is felt that the consideration of the third order term of the integral
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approximation will yield a theoretical curve which more closely approxi=~
mates The-experimanfal curve,

Note that we have successfully obtained the result of
having negligible stresses in the directions to which there was no
stress applied in the actual experiment. This combined with the
results for the 22-direction in case | and ll-direction in case ||
constitutes a reasonable model of the three dimensional mechanical

behavior of polycrystalline reactor grade graphite.
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Vi, CONCLUSIONS AND RECOMMENDATIONS

The applicability of our three dimensional theory is
seriously impared by a lack of knowledge of the form of the off-
diagonal terms of the strain matrix. The theory itself remains a
valid one, but its applicability remains small. This can be
remedied as soon as the needed data can be supplied. All that is
needed is some truly three dimensional data, or some simple triaxial
data which can be obtained from various general strain input-stress
output experiments. The only data available to us implies that we
have zero outputs in two directions, and this is not a true test of
the theory, This data does not even allow the determination of all
the constants,

Our one dimensional theory is, along with Woolley's work,
the best description of the one dimensional mechanical behavior of
graphite, It is also the best description of the one dimensional
cyclic straining behavior of graphite to be found in the literature.
The only other description of this type of cyclic straining is that
of Jenkins and as mentioned in the first chapter it has severe
limitations,

Our three dimensional theory is the only one of its type
which has been applied to graphite, and in this respect is
complietely original. It is the only integral theory which can be
applied to materials which deform plastically. Only its range of

applicablility need be determined.
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in the development of our formalism which was applied to
the mechanical response of reactor grade graphite no basic assumption,
aside from rate independence, was made concerning the nature of the
material up to the point the form of the kernel functions were
assumed, Because of this we may reasonably expect that this theory
will be applicable to other rate independent materials and perhaps
to even materials with almost rate Independent response. In particular
this formulation seems readily applicable to the description of soils,
concrete, and strain hardening metals,

Looking retrospectively at the mathematical model derived
here we see that the equations look similar to those equations
encountered in the |inear theory of viscoelésflcifyq From this
observation we may term our theory a theory of viscoplasticity, or
some other term which may prove more appropriate.

The question arises as to the use of our theory in solving
boundary value problems, |t would be very deéirable to solve even
the most simple boundary value problem. There are two basic stumbling
blocks to the sclution of this Typelof problem. First, we must
discover how to convert the natural boundary conditions, given in
terms of time and position, to boundary conditions in terms of the arc
length, Second, we must find a solution to the field equations which
become unwieldy when written in terms of the nonlinear arc length.

it should be mentioned that our theory is capable of
predicting a yield surface. In fact, by following the work of
Morgan [53] a yield surface can be predicted which can be inferpreted

as the usual yield surface encountered in the classical plasticity
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theories, It is possible that by this means one equation can

be developed which will descirbe the entire range of an elastic~
plastic material. That is, it may be possible to develop one
equation which can describe the cyclic straining behavior of an
elastic-plastic material in both the elastic and plastic ranges.

Returning fo graphife it would be very instructive to
obtain both one dimensional and three dimensional hysteresis data
for the Bauschinger effect in reactor grade graphite., Because of
a lack of data for graphite in reversed tension and compression
the case of hysteresis around the origin of the stress-strain
curve was not analyzed. It is felt that the present theory will
be capable of predicting this type of behavior adequately.

There are areas, outside of mechanics, where the type of
analysis we have employed might prove extremely useful. Pipkin and
Rivlin have shown that a theory of the type we have developed Is
directly applicable to the theory of magnetism [54]. Our theory
might also be applied to some of the problems in the biological
sciences where input-output systems can represent the biological

process under consideration.
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Fig. 3. Spring Element

Fig. 4. Friction Block Element
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Fig. 5. Elastic-plastic Model
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Fig. 6. Elastic-plastic stress~strain curve

Fig. 7. Generalized Elastic-plastic curve
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A

Fig. 8. Basic Graphite Element™

Fig. 9. One Dimensional Graphite Model
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Fig. 10. Black Box
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Fig. 12,
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Stress—-Strain Curve for Equation (4.25)
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